QuantumProvenanceData¶
- 
class lsst.daf.butler.QuantumProvenanceData¶
- Bases: - pydantic.main.BaseModel- A serializable struct for per-quantum provenance information and datastore records. - Notes - This class slightly duplicates information from the - Quantumclass itself (the- predicted_inputsand- predicted_outputssets should have the same IDs present in- Quantum.inputsand- Quantum.outputs), but overall it assumes the original- Quantumis also available to reconstruct the complete provenance (e.g. by associating dataset IDs with data IDs, dataset types, and- RUNnames.- Note that - pydanticmethod- parse_raw()is not going to work correctly for this class, use- directmethod instead.- Attributes Summary - copy- Duplicate a model, optionally choose which fields to include, exclude and change. - dict- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - json- Generate a JSON representation of the model, - includeand- excludearguments as per- dict().- Methods Summary - collect_and_transfer(butler, quanta, provenance)- Transfer output datasets from multiple quanta to a more permantent - Butlerrepository.- construct(_fields_set, **values)- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. - direct(*, predicted_inputs, uuid.UUID]], …)- Construct an instance directly without validators. - from_orm(obj)- parse_file(path, pathlib.Path], *, …)- parse_obj(obj)- parse_raw(*args, **kwargs)- schema(by_alias, ref_template)- schema_json(*, by_alias, ref_template, …)- update_forward_refs(**localns)- Try to update ForwardRefs on fields based on this Model, globalns and localns. - validate(value)- Attributes Documentation - 
copy¶
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters: - include – fields to include in new model
- exclude – fields to exclude from new model, as with values this takes precedence over include
- update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
- deep – set to Trueto make a deep copy of the model
 - Returns: - new model instance 
 - 
dict¶
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. 
 - 
json¶
- Generate a JSON representation of the model, - includeand- excludearguments as per- dict().- encoderis an optional function to supply as- defaultto json.dumps(), other arguments as per- json.dumps().
 - Methods Documentation - 
static collect_and_transfer(butler: Butler, quanta: Iterable[Quantum], provenance: Iterable[QuantumProvenanceData]) → None¶
- Transfer output datasets from multiple quanta to a more permantent - Butlerrepository.- Parameters: - butler : Butler
- Full butler representing the data repository to transfer datasets to. 
- quanta : Iterable[Quantum]
- Iterable of - Quantumobjects that carry information about predicted outputs. May be a single-pass iterator.
- provenance : Iterable[QuantumProvenanceData]
- Provenance and datastore data for each of the given quanta, in the same order. May be a single-pass iterator. 
 - Notes - Input-output provenance data is not actually transferred yet, because - Registryhas no place to store it.- This method probably works most efficiently if run on all quanta for a single task label at once, because this will gather all datasets of a particular type together into a single vectorized - Registryimport. It should still behave correctly if run on smaller groups of quanta or even quanta from multiple tasks.- Currently this method transfers datastore record data unchanged, with no possibility of actually moving (e.g.) files. Datastores that are present only in execution or only in the more permanent butler are ignored. 
- butler : 
 - 
classmethod construct(_fields_set: Optional[SetStr] = None, **values) → Model¶
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if - Config.extra = 'allow'was set since it adds all passed values
 - 
classmethod direct(*, predicted_inputs: Iterable[Union[str, uuid.UUID]], available_inputs: Iterable[Union[str, uuid.UUID]], actual_inputs: Iterable[Union[str, uuid.UUID]], predicted_outputs: Iterable[Union[str, uuid.UUID]], actual_outputs: Iterable[Union[str, uuid.UUID]], datastore_records: Mapping[str, Mapping[KT, VT_co]]) → lsst.daf.butler._quantum_backed.QuantumProvenanceData¶
- Construct an instance directly without validators. - This differs from the pydantic “construct” method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding - directmethods.- This method should only be called when the inputs are trusted. 
 - 
classmethod from_orm(obj: Any) → Model¶
 - 
classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
 - 
classmethod parse_obj(obj: Any) → Model¶
 - 
classmethod parse_raw(*args, **kwargs) → lsst.daf.butler._quantum_backed.QuantumProvenanceData¶
 - 
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
 - 
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs) → unicode¶
 - 
classmethod update_forward_refs(**localns) → None¶
- Try to update ForwardRefs on fields based on this Model, globalns and localns. 
 - 
classmethod validate(value: Any) → Model¶
 
-