FgcmBuildStarsBaseTask¶
-
class
lsst.fgcmcal.
FgcmBuildStarsBaseTask
(initInputs=None, **kwargs)¶ Bases:
lsst.pipe.base.PipelineTask
,abc.ABC
Base task to build stars for FGCM global calibration
Attributes Summary
canMultiprocess
Methods Summary
emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. fgcmMakeAllStarObservations
(groupedHandles, …)Compile all good star observations from visits in visitCat. fgcmMakeVisitCatalog
(camera, groupedHandles)Make a visit catalog with all the keys from each visit fgcmMatchStars
(visitCat, obsCat[, lutHandle])Use FGCM code to match observations into unique stars. getAllSchemaCatalogs
()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getName
()Get the name of the task. getResourceConfig
()Return resource configuration for this task. getSchemaCatalogs
()Get the schemas generated by this task. getTaskDict
()Get a dictionary of all tasks as a shallow copy. makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.run
(**kwargs)Run task algorithm on in-memory data. runQuantum
(butlerQC, inputRefs, outputRefs)Method to do butler IO and or transforms to provide in memory objects for tasks run method timer
(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess
= True¶
Methods Documentation
-
emptyMetadata
() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
fgcmMakeAllStarObservations
(groupedHandles, visitCat, sourceSchema, camera, calibFluxApertureRadius=None)¶ Compile all good star observations from visits in visitCat.
Parameters: - groupedHandles :
dict
[list
[lsst.daf.butler.DeferredDatasetHandle
]] Dataset handles, grouped by visit.
- visitCat :
afw.table.BaseCatalog
Catalog with visit data for FGCM
- sourceSchema :
lsst.afw.table.Schema
Schema for the input src catalogs.
- camera :
lsst.afw.cameraGeom.Camera
- calibFluxApertureRadius :
float
, optional Aperture radius for calibration flux.
- inStarObsCat :
afw.table.BaseCatalog
Input observation catalog. If this is incomplete, observations will be appended from when it was cut off.
Returns: - fgcmStarObservations :
afw.table.BaseCatalog
Full catalog of good observations.
Raises: - RuntimeError: Raised if doSubtractLocalBackground is True and
calibFluxApertureRadius is not set.
- groupedHandles :
-
fgcmMakeVisitCatalog
(camera, groupedHandles, bkgHandleDict=None)¶ Make a visit catalog with all the keys from each visit
Parameters: - camera: `lsst.afw.cameraGeom.Camera`
Camera from the butler
- groupedHandles: `dict` [`list` [`lsst.daf.butler.DeferredDatasetHandle`]]
Dataset handles, grouped by visit.
- bkgHandleDict: `dict`, optional
Dictionary of
lsst.daf.butler.DeferredDatasetHandle
for background info.
Returns: - visitCat:
afw.table.BaseCatalog
-
fgcmMatchStars
(visitCat, obsCat, lutHandle=None)¶ Use FGCM code to match observations into unique stars.
Parameters: - visitCat: `afw.table.BaseCatalog`
Catalog with visit data for fgcm
- obsCat: `afw.table.BaseCatalog`
Full catalog of star observations for fgcm
- lutHandle: `lsst.daf.butler.DeferredDatasetHandle`, optional
Data reference to fgcm look-up table (used if matching reference stars).
Returns: - fgcmStarIdCat:
afw.table.BaseCatalog
Catalog of unique star identifiers and index keys
- fgcmStarIndicesCat:
afwTable.BaseCatalog
Catalog of unique star indices
- fgcmRefCat:
afw.table.BaseCatalog
Catalog of matched reference stars. Will be None if
config.doReferenceMatches
is False.
-
getAllSchemaCatalogs
() → Dict[str, Any]¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict
Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs
, not this method.- schemacatalogs :
-
getFullMetadata
() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig
() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfig
orNone
if resource - configuration is not defined for this task.
- Object of type
-
getSchemaCatalogs
() → Dict[str, Any]¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict
Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for this task.
See also
Task.getAllSchemaCatalogs
Notes
Warning
Subclasses that use schemas must override this method. The default implementation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getTaskDict
() → Dict[str, weakref]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField
(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask
(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.- name :
-
run
(**kwargs) → Struct¶ Run task algorithm on in-memory data.
This method should be implemented in a subclass. This method will receive keyword arguments whose names will be the same as names of connection fields describing input dataset types. Argument values will be data objects retrieved from data butler. If a dataset type is configured with
multiple
field set toTrue
then the argument value will be a list of objects, otherwise it will be a single object.If the task needs to know its input or output DataIds then it has to override
runQuantum
method instead.This method should return a
Struct
whose attributes share the same name as the connection fields describing output dataset types.Returns: - struct :
Struct
Struct with attribute names corresponding to output connection fields
Examples
Typical implementation of this method may look like:
def run(self, input, calib): # "input", "calib", and "output" are the names of the config # fields # Assuming that input/calib datasets are `scalar` they are # simple objects, do something with inputs and calibs, produce # output image. image = self.makeImage(input, calib) # If output dataset is `scalar` then return object, not list return Struct(output=image)
- struct :
-
runQuantum
(butlerQC: lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext, inputRefs: lsst.pipe.base.connections.InputQuantizedConnection, outputRefs: lsst.pipe.base.connections.OutputQuantizedConnection) → None¶ Method to do butler IO and or transforms to provide in memory objects for tasks run method
Parameters: - butlerQC :
ButlerQuantumContext
A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum
.- inputRefs :
InputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined input/prerequisite connections.- outputRefs :
OutputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined output connections.
- butlerQC :
-
timer
(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-