DcrModel¶
- 
class lsst.ip.diffim.DcrModel(modelImages, effectiveWavelength, bandwidth, filterLabel=None, psf=None, bbox=None, wcs=None, mask=None, variance=None, photoCalib=None)¶
- Bases: - object- A model of the true sky after correcting chromatic effects. - Notes - The - DcrModelcontains an estimate of the true sky, at a higher wavelength resolution than the input observations. It can be forward- modeled to produce Differential Chromatic Refraction (DCR) matched templates for a given- Exposure, and provides utilities for conditioning the model in- dcrAssembleCoaddto avoid oscillating solutions between iterations of forward modeling or between the subfilters of the model.- Attributes: - Attributes Summary - bandwidth- Return the bandwidth of the model. - bbox- Return the common bounding box of each subfilter image. - effectiveWavelength- Return the effective wavelength of the model. - filter- Return the filter label for the model. - mask- Return the common mask of each subfilter image. - psf- Return the psf of the model. - variance- Return the common variance of each subfilter image. - wcs- Return the WCS of each subfilter image. - Methods Summary - applyImageThresholds(image[, highThreshold, …])- Restrict image values to be between upper and lower limits. - assign(dcrSubModel[, bbox])- Update a sub-region of the - DcrModelwith new values.- buildMatchedExposure([exposure, visitInfo, …])- Wrapper to create an exposure from a template image. - buildMatchedTemplate([exposure, order, …])- Create a DCR-matched template image for an exposure. - calculateNoiseCutoff(image, statsCtrl, …)- Helper function to calculate the background noise level of an image. - conditionDcrModel(modelImages, bbox[, gain])- Average two iterations’ solutions to reduce oscillations. - fromImage(maskedImage, dcrNumSubfilters, …)- Initialize a DcrModel by dividing a coadd between the subfilters. - fromQuantum(availableCoaddRefs, …)- Load an existing DcrModel from a Gen 3 repository. - getReferenceImage([bbox])- Calculate a reference image from the average of the subfilter images. - regularizeModelFreq(modelImages, bbox, …)- Restrict large variations in the model between subfilters. - regularizeModelIter(subfilter, newModel, …)- Restrict large variations in the model between iterations. - Attributes Documentation - 
bandwidth¶
- Return the bandwidth of the model. - Returns: - bandwidth : float
- The bandwidth of the current filter, in nanometers. 
 
- bandwidth : 
 - 
bbox¶
- Return the common bounding box of each subfilter image. - Returns: - bbox : lsst.afw.geom.Box2I
- Bounding box of the DCR model. 
 
- bbox : 
 - 
effectiveWavelength¶
- Return the effective wavelength of the model. - Returns: - effectiveWavelength : float
- The effective wavelength of the current filter, in nanometers. 
 
- effectiveWavelength : 
 - 
filter¶
- Return the filter label for the model. - Returns: - filterLabel : lsst.afw.image.FilterLabel
- The filter used for the input observations. 
 
- filterLabel : 
 - 
mask¶
- Return the common mask of each subfilter image. - Returns: - mask : lsst.afw.image.Mask
- Mask plane of the DCR model. 
 
- mask : 
 - 
psf¶
- Return the psf of the model. - Returns: - psf : lsst.afw.detection.Psf
- Point spread function (PSF) of the model. 
 
- psf : 
 - 
variance¶
- Return the common variance of each subfilter image. - Returns: - variance : lsst.afw.image.Image
- Variance plane of the DCR model. 
 
- variance : 
 - 
wcs¶
- Return the WCS of each subfilter image. - Returns: - bbox : lsst.afw.geom.SkyWcs
- Coordinate system definition (wcs) for the exposure. 
 
- bbox : 
 - Methods Documentation - 
applyImageThresholds(image, highThreshold=None, lowThreshold=None, regularizationWidth=2)¶
- Restrict image values to be between upper and lower limits. - This method flags all pixels in an image that are outside of the given threshold values. The threshold values are taken from a reference image, so noisy pixels are likely to get flagged. In order to exclude those noisy pixels, the array of flags is eroded and dilated, which removes isolated pixels outside of the thresholds from the list of pixels to be modified. Pixels that remain flagged after this operation have their values set to the appropriate upper or lower threshold value. - Parameters: - image : numpy.ndarray
- The image to apply the thresholds to. The values will be modified in place. 
- highThreshold : numpy.ndarray, optional
- Array of upper limit values for each pixel of - image.
- lowThreshold : numpy.ndarray, optional
- Array of lower limit values for each pixel of - image.
- regularizationWidth : int, optional
- Minimum radius of a region to include in regularization, in pixels. 
 
- image : 
 - 
assign(dcrSubModel, bbox=None)¶
- Update a sub-region of the - DcrModelwith new values.- Parameters: - dcrSubModel : lsst.pipe.tasks.DcrModel
- New model of the true scene after correcting chromatic effects. 
- bbox : lsst.afw.geom.Box2I, optional
- Sub-region of the coadd. Defaults to the bounding box of - dcrSubModel.
 - Raises: - ValueError
- If the new model has a different number of subfilters. 
 
- dcrSubModel : 
 - 
buildMatchedExposure(exposure=None, visitInfo=None, bbox=None, mask=None)¶
- Wrapper to create an exposure from a template image. - Parameters: - exposure : lsst.afw.image.Exposure, optional
- The input exposure to build a matched template for. May be omitted if all of the metadata is supplied separately 
- visitInfo : lsst.afw.image.VisitInfo, optional
- Metadata for the exposure. Ignored if - exposureis set.
- bbox : lsst.afw.geom.Box2I, optional
- Sub-region of the coadd, or use the entire coadd if not supplied. 
- mask : lsst.afw.image.Mask, optional
- reference mask to use for the template image. 
 - Returns: - templateExposure : lsst.afw.image.exposureF
- The DCR-matched template 
 - Raises: - RuntimeError
- If no - photcCalibis set.
 
- exposure : 
 - 
buildMatchedTemplate(exposure=None, order=3, visitInfo=None, bbox=None, mask=None, splitSubfilters=True, splitThreshold=0.0, amplifyModel=1.0)¶
- Create a DCR-matched template image for an exposure. - Parameters: - exposure : lsst.afw.image.Exposure, optional
- The input exposure to build a matched template for. May be omitted if all of the metadata is supplied separately 
- order : int, optional
- Interpolation order of the DCR shift. 
- visitInfo : lsst.afw.image.VisitInfo, optional
- Metadata for the exposure. Ignored if - exposureis set.
- bbox : lsst.afw.geom.Box2I, optional
- Sub-region of the coadd, or use the entire coadd if not supplied. 
- mask : lsst.afw.image.Mask, optional
- reference mask to use for the template image. 
- splitSubfilters : bool, optional
- Calculate DCR for two evenly-spaced wavelengths in each subfilter, instead of at the midpoint. Default: True 
- splitThreshold : float, optional
- Minimum DCR difference within a subfilter required to use - splitSubfilters
- amplifyModel : float, optional
- Multiplication factor to amplify differences between model planes. Used to speed convergence of iterative forward modeling. 
 - Returns: - templateImage : lsst.afw.image.ImageF
- The DCR-matched template 
 - Raises: - ValueError
- If neither - exposureor- visitInfoare set.
 
- exposure : 
 - 
calculateNoiseCutoff(image, statsCtrl, bufferSize, convergenceMaskPlanes='DETECTED', mask=None, bbox=None)¶
- Helper function to calculate the background noise level of an image. - Parameters: - image : lsst.afw.image.Image
- The input image to evaluate the background noise properties. 
- statsCtrl : lsst.afw.math.StatisticsControl
- Statistics control object for coaddition. 
- bufferSize : int
- Number of additional pixels to exclude from the edges of the bounding box. 
- convergenceMaskPlanes : listofstr, orstr
- Mask planes to use to calculate convergence. 
- mask : lsst.afw.image.Mask, Optional
- Optional alternate mask 
- bbox : lsst.afw.geom.Box2I, optional
- Sub-region of the masked image to calculate the noise level over. 
 - Returns: - noiseCutoff : float
- The threshold value to treat pixels as noise in an image.. 
 
- image : 
 - 
conditionDcrModel(modelImages, bbox, gain=1.0)¶
- Average two iterations’ solutions to reduce oscillations. - Parameters: - modelImages : listoflsst.afw.image.Image
- The new DCR model images from the current iteration. The values will be modified in place. 
- bbox : lsst.afw.geom.Box2I
- Sub-region of the coadd 
- gain : float, optional
- Relative weight to give the new solution when updating the model. Defaults to 1.0, which gives equal weight to both solutions. 
 
- modelImages : 
 - 
classmethod fromImage(maskedImage, dcrNumSubfilters, effectiveWavelength, bandwidth, wcs=None, filterLabel=None, psf=None, photoCalib=None)¶
- Initialize a DcrModel by dividing a coadd between the subfilters. - Parameters: - maskedImage : lsst.afw.image.MaskedImage
- Input coadded image to divide equally between the subfilters. 
- dcrNumSubfilters : int
- Number of sub-filters used to model chromatic effects within a band. 
- effectiveWavelength : float
- The effective wavelengths of the current filter, in nanometers. 
- bandwidth : float
- The bandwidth of the current filter, in nanometers. 
- wcs : lsst.afw.geom.SkyWcs
- Coordinate system definition (wcs) for the exposure. 
- filterLabel : lsst.afw.image.FilterLabel, optional
- The filter label, set in the current instruments’ obs package. Required for any calculation of DCR, including making matched templates. 
- psf : lsst.afw.detection.Psf, optional
- Point spread function (PSF) of the model. Required if the - DcrModelwill be persisted.
- photoCalib : lsst.afw.image.PhotoCalib, optional
- Calibration to convert instrumental flux and flux error to nanoJansky. 
 - Returns: - dcrModel : lsst.pipe.tasks.DcrModel
- Best fit model of the true sky after correcting chromatic effects. 
 
- maskedImage : 
 - 
classmethod fromQuantum(availableCoaddRefs, effectiveWavelength, bandwidth, numSubfilters)¶
- Load an existing DcrModel from a Gen 3 repository. - Parameters: - availableCoaddRefs : dict[int,lsst.daf.butler.DeferredDatasetHandle]
- Dictionary of spatially relevant retrieved coadd patches, indexed by their sequential patch number. 
- effectiveWavelength : float
- The effective wavelengths of the current filter, in nanometers. 
- bandwidth : float
- The bandwidth of the current filter, in nanometers. 
- numSubfilters : int
- Number of subfilters in the DcrCoadd. 
 - Returns: - dcrModel : lsst.pipe.tasks.DcrModel
- Best fit model of the true sky after correcting chromatic effects. 
 
- availableCoaddRefs : 
 - 
getReferenceImage(bbox=None)¶
- Calculate a reference image from the average of the subfilter images. - Parameters: - bbox : lsst.afw.geom.Box2I, optional
- Sub-region of the coadd. Returns the entire image if - None.
 - Returns: - refImage : numpy.ndarray
- The reference image with no chromatic effects applied. 
 
- bbox : 
 - 
regularizeModelFreq(modelImages, bbox, statsCtrl, regularizationFactor, regularizationWidth=2, mask=None, convergenceMaskPlanes='DETECTED')¶
- Restrict large variations in the model between subfilters. - Parameters: - modelImages : listoflsst.afw.image.Image
- The new DCR model images from the current iteration. The values will be modified in place. 
- bbox : lsst.afw.geom.Box2I
- Sub-region to coadd 
- statsCtrl : lsst.afw.math.StatisticsControl
- Statistics control object for coaddition. 
- regularizationFactor : float
- Maximum relative change of the model allowed between subfilters. 
- regularizationWidth : int, optional
- Minimum radius of a region to include in regularization, in pixels. 
- mask : lsst.afw.image.Mask, optional
- Optional alternate mask 
- convergenceMaskPlanes : listofstr, orstr, optional
- Mask planes to use to calculate convergence. 
 - Notes - This implementation of frequency regularization restricts each subfilter image to be a smoothly-varying function times a reference image. 
- modelImages : 
 - 
regularizeModelIter(subfilter, newModel, bbox, regularizationFactor, regularizationWidth=2)¶
- Restrict large variations in the model between iterations. - Parameters: - subfilter : int
- Index of the current subfilter within the full band. 
- newModel : lsst.afw.image.Image
- The new DCR model for one subfilter from the current iteration. Values in - newModelthat are extreme compared with the last iteration are modified in place.
- bbox : lsst.afw.geom.Box2I
- Sub-region to coadd 
- regularizationFactor : float
- Maximum relative change of the model allowed between iterations. 
- regularizationWidth : int, optional
- Minimum radius of a region to include in regularization, in pixels. 
 
- subfilter : 
 
-