DiaPipelineConnections¶
-
class
lsst.ap.association.DiaPipelineConnections(*, config=None)¶ Bases:
lsst.pipe.base.PipelineTaskConnectionsButler connections for DiaPipelineTask.
Attributes Summary
allConnectionsapdbMarkerassociatedDiaSourcesdefaultTemplatesdiaSourceTablediffImdimensionsexposureinitInputsinitOutputsinputsoutputsprerequisiteInputssolarSystemObjectTabletemplateMethods Summary
adjustQuantum(inputs, outputs, label, dataId)Override to make adjustments to lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.buildDatasetRefs(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections= {'apdbMarker': Output(name='apdb_marker', storageClass='Config', doc='Marker dataset storing the configuration of the Apdb for each visit/detector. Used to signal the completion of the pipeline.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'associatedDiaSources': Output(name='{fakesType}{coaddName}Diff_assocDiaSrc', storageClass='DataFrame', doc='Optional output storing the DiaSource catalog after matching, calibration, and standardization for insertation into the Apdb.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'diaSourceTable': Input(name='{fakesType}{coaddName}Diff_diaSrcTable', storageClass='DataFrame', doc='Catalog of calibrated DiaSources.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'diffIm': Input(name='{fakesType}{coaddName}Diff_differenceExp', storageClass='ExposureF', doc='Difference image on which the DiaSources were detected.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'exposure': Input(name='{fakesType}calexp', storageClass='ExposureF', doc='Calibrated exposure differenced with a template image during image differencing.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'solarSystemObjectTable': Input(name='visitSsObjects', storageClass='DataFrame', doc='Catalog of SolarSolarSystem objects expected to be observable in this detectorVisit.', multiple=False, dimensions=('instrument', 'visit'), isCalibration=False, deferLoad=False, minimum=1), 'template': Input(name='{fakesType}{coaddName}Diff_templateExp', storageClass='ExposureF', doc='Warped template used to create `subtractedExposure`. Not PSF matched.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1)}¶
-
apdbMarker¶
-
associatedDiaSources¶
-
defaultTemplates= {'coaddName': 'deep', 'fakesType': ''}¶
-
diaSourceTable¶
-
diffIm¶
-
dimensions= {'detector', 'instrument', 'visit'}¶
-
exposure¶
-
initInputs= frozenset()¶
-
initOutputs= frozenset()¶
-
inputs= frozenset({'exposure', 'diaSourceTable', 'solarSystemObjectTable', 'template', 'diffIm'})¶
-
outputs= frozenset({'associatedDiaSources', 'apdbMarker'})¶
-
prerequisiteInputs= frozenset()¶
-
solarSystemObjectTable¶
-
template¶
Methods Documentation
-
adjustQuantum(inputs, outputs, label, dataId)¶ Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.This implementation checks to make sure that the filters in the dataset are compatible with AP processing as set by the Apdb/DPDD schema.
Parameters: - inputs :
dict Dictionary whose keys are an input (regular or prerequisite) connection name and whose values are a tuple of the connection instance and a collection of associated
DatasetRefobjects. The exact type of the nested collections is unspecified; it can be assumed to be multi-pass iterable and supportlenandin, but it should not be mutated in place. In contrast, the outer dictionaries are guaranteed to be temporary copies that are truedictinstances, and hence may be modified and even returned; this is especially useful for delegating tosuper(see notes below).- outputs :
dict Dict of output datasets, with the same structure as
inputs.- label :
str Label for this task in the pipeline (should be used in all diagnostic messages).
- data_id :
lsst.daf.butler.DataCoordinate Data ID for this quantum in the pipeline (should be used in all diagnostic messages).
Returns: - adjusted_inputs :
dict Dict of the same form as
inputswith updated containers of inputDatasetRefobjects. Connections that are not changed should not be returned at all. Datasets may only be removed, not added. Nested collections may be of any multi-pass iterable type, and the order of iteration will set the order of iteration withinPipelineTask.runQuantum.- adjusted_outputs :
dict Dict of updated output datasets, with the same structure and interpretation as
adjusted_inputs.
Raises: - ScalarError
Raised if any
InputorPrerequisiteInputconnection hasmultipleset toFalse, but multiple datasets.- NoWorkFound
Raised to indicate that this quantum should not be run; not enough datasets were found for a regular
Inputconnection, and the quantum should be pruned or skipped.- FileNotFoundError
Raised to cause QuantumGraph generation to fail (with the message included in this exception); not enough datasets were found for a
PrerequisiteInputconnection.
- inputs :
-
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tupleof (InputQuantizedConnection, OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-