ForcedPhotCoaddTask¶
-
class
lsst.meas.base.ForcedPhotCoaddTask(butler=None, refSchema=None, initInputs=None, **kwds)¶ Bases:
lsst.pipe.base.PipelineTaskA pipeline task for performing forced measurement on coadd images.
Parameters: - butler :
None Deprecated and unused. Should always be
None.- refSchema :
lsst.afw.table.Schema, optional The schema of the reference catalog, passed to the constructor of the references subtask. Optional, but must be specified if
initInputsis not; if both are specified,initInputstakes precedence.- initInputs :
dict Dictionary that can contain a key
inputSchemacontaining the schema. If present will override the value ofrefSchema.- **kwds
Keyword arguments are passed to the supertask constructor.
Attributes Summary
canMultiprocessdataPrefixMethods Summary
emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. generateMeasCat(exposureDataId, exposure, …)Generate a measurement catalog. getAllSchemaCatalogs()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getName()Get the name of the task. getResourceConfig()Return resource configuration for this task. getSchemaCatalogs()The schema catalogs that will be used by this task. getTaskDict()Get a dictionary of all tasks as a shallow copy. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.run(measCat, exposure, refCat, refWcs[, …])Perform forced measurement on a single exposure. runQuantum(butlerQC, inputRefs, outputRefs)Method to do butler IO and or transforms to provide in memory objects for tasks run method timer(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess= True¶
-
dataPrefix= 'deepCoadd_'¶
Methods Documentation
-
emptyMetadata() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
generateMeasCat(exposureDataId, exposure, refCat, refCatInBand, refWcs, idPackerName, footprintData)¶ Generate a measurement catalog.
Parameters: - exposureDataId :
DataId Butler dataId for this exposure.
- exposure :
lsst.afw.image.exposure.Exposure Exposure to generate the catalog for.
- refCat :
lsst.afw.table.SourceCatalog Catalog of shapes and positions at which to force photometry.
- refCatInBand :
lsst.afw.table.SourceCatalog Catalog of shapes and position in the band forced photometry is currently being performed
- refWcs :
lsst.afw.image.SkyWcs Reference world coordinate system.
- idPackerName :
str Type of ID packer to construct from the registry.
- footprintData :
ScarletDataModelorlsst.afw.table.SourceCatalog Either the scarlet data models or the deblended catalog containing footprints. If
footprintDataisNonethen the footprints contained inrefCatInBandare used.
Returns: - measCat :
lsst.afw.table.SourceCatalog Catalog of forced sources to measure.
- expId :
int Unique binary id associated with the input exposure
Raises: - LookupError
Raised if a footprint with a given source id was in the reference catalog but not in the reference catalog in band (meaning there was some sort of mismatch in the two input catalogs)
- exposureDataId :
-
getAllSchemaCatalogs() → Dict[str, Any]¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs, not this method.- schemacatalogs :
-
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfigorNoneif resource - configuration is not defined for this task.
- Object of type
-
getSchemaCatalogs()¶ The schema catalogs that will be used by this task.
Returns: - schemaCatalogs :
dict Dictionary mapping dataset type to schema catalog.
Notes
There is only one schema for each type of forced measurement. The dataset type for this measurement is defined in the mapper.
- schemaCatalogs :
-
getTaskDict() → Dict[str, weakref]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
run(measCat, exposure, refCat, refWcs, exposureId=None)¶ Perform forced measurement on a single exposure.
Parameters: - measCat :
lsst.afw.table.SourceCatalog The measurement catalog, based on the sources listed in the reference catalog.
- exposure :
lsst.afw.image.Exposure The measurement image upon which to perform forced detection.
- refCat :
lsst.afw.table.SourceCatalog The reference catalog of sources to measure.
- refWcs :
lsst.afw.image.SkyWcs The WCS for the references.
- exposureId :
int Optional unique exposureId used for random seed in measurement task.
Returns: - result : ~`lsst.pipe.base.Struct`
Structure with fields:
measCatCatalog of forced measurement results (
lsst.afw.table.SourceCatalog).
- measCat :
-
runQuantum(butlerQC, inputRefs, outputRefs)¶ Method to do butler IO and or transforms to provide in memory objects for tasks run method
Parameters: - butlerQC :
ButlerQuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs :
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs :
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC :
-
timer(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- butler :