SimulatedModel¶
- 
class 
lsst.cp.pipe.SimulatedModel¶ Bases:
lsst.cp.pipe.OverscanModelSimulated overscan model.
Methods Summary
difference(params, signal, data, error, …)Calculate the flattened difference array between model and data. loglikelihood(params, signal, data, error, …)Calculate log likelihood of the model. model_results(params, signal, num_transfers, amp)Generate a realization of the overscan model, using the specified fit parameters and input signal. negative_loglikelihood(params, signal, data, …)Calculate negative log likelihood of the model. rms_error(params, signal, data, error, …)Calculate RMS error between model and data. Methods Documentation
- 
difference(params, signal, data, error, *args, **kwargs)¶ Calculate the flattened difference array between model and data.
Parameters: - params : 
lmfit.Parameters Object containing the model parameters.
- signal : 
np.ndarray, (nMeasurements) Array of image means.
- data : 
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error : 
float Fixed error value.
- *args
 Additional position arguments.
- **kwargs
 Additional keyword arguments.
Returns: - difference : 
np.ndarray, (nMeasurements*nCols) The rms error between the model and input data.
- params : 
 
- 
loglikelihood(params, signal, data, error, *args, **kwargs)¶ Calculate log likelihood of the model.
Parameters: - params : 
lmfit.Parameters Object containing the model parameters.
- signal : 
np.ndarray, (nMeasurements) Array of image means.
- data : 
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error : 
float Fixed error value.
- *args
 Additional position arguments.
- **kwargs
 Additional keyword arguments.
Returns: - logL : 
float The log-likelihood of the observed data given the model parameters.
- params : 
 
- 
static 
model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)¶ Generate a realization of the overscan model, using the specified fit parameters and input signal.
Parameters: - params : 
lmfit.Parameters Object containing the model parameters.
- signal : 
np.ndarray, (nMeasurements) Array of image means.
- num_transfers : 
int Number of serial transfers that the charge undergoes.
- amp : 
lsst.afw.cameraGeom.Amplifier Amplifier to use for geometry information.
- start : 
int, optional First overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
- stop : 
int, optional Last overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
- trap_type : 
str, optional Type of trap model to use.
Returns: - results : 
np.ndarray, (nMeasurements, nCols) Model results.
- params : 
 
- 
negative_loglikelihood(params, signal, data, error, *args, **kwargs)¶ Calculate negative log likelihood of the model.
Parameters: - params : 
lmfit.Parameters Object containing the model parameters.
- signal : 
np.ndarray, (nMeasurements) Array of image means.
- data : 
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error : 
float Fixed error value.
- *args
 Additional position arguments.
- **kwargs
 Additional keyword arguments.
Returns: - negativelogL : 
float The negative log-likelihood of the observed data given the model parameters.
- params : 
 
- 
rms_error(params, signal, data, error, *args, **kwargs)¶ Calculate RMS error between model and data.
Parameters: - params : 
lmfit.Parameters Object containing the model parameters.
- signal : 
np.ndarray, (nMeasurements) Array of image means.
- data : 
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error : 
float Fixed error value.
- *args
 Additional position arguments.
- **kwargs
 Additional keyword arguments.
Returns: - rms : 
float The rms error between the model and input data.
- params : 
 
-