ForcedPhotCoaddTask

class lsst.meas.base.ForcedPhotCoaddTask(butler=None, refSchema=None, initInputs=None, **kwds)

Bases: lsst.pipe.base.PipelineTask

A pipeline task for performing forced measurement on coadd images.

Parameters:
butler : None

Deprecated and unused. Should always be None.

refSchema : lsst.afw.table.Schema, optional

The schema of the reference catalog, passed to the constructor of the references subtask. Optional, but must be specified if initInputs is not; if both are specified, initInputs takes precedence.

initInputs : dict

Dictionary that can contain a key inputSchema containing the schema. If present will override the value of refSchema.

**kwds

Keyword arguments are passed to the supertask constructor.

Attributes Summary

canMultiprocess
dataPrefix

Methods Summary

emptyMetadata() Empty (clear) the metadata for this Task and all sub-Tasks.
generateMeasCat(exposureDataId, exposure, …) Generate a measurement catalog.
getAllSchemaCatalogs() Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
getFullMetadata() Get metadata for all tasks.
getFullName() Get the task name as a hierarchical name including parent task names.
getName() Get the name of the task.
getResourceConfig() Return resource configuration for this task.
getSchemaCatalogs() The schema catalogs that will be used by this task.
getTaskDict() Get a dictionary of all tasks as a shallow copy.
makeField(doc) Make a lsst.pex.config.ConfigurableField for this task.
makeSubtask(name, **keyArgs) Create a subtask as a new instance as the name attribute of this task.
run(measCat, exposure, refCat, refWcs[, …]) Perform forced measurement on a single exposure.
runQuantum(butlerQC, inputRefs, outputRefs) Method to do butler IO and or transforms to provide in memory objects for tasks run method
timer(name, logLevel) Context manager to log performance data for an arbitrary block of code.

Attributes Documentation

canMultiprocess = True
dataPrefix = 'deepCoadd_'

Methods Documentation

emptyMetadata() → None

Empty (clear) the metadata for this Task and all sub-Tasks.

generateMeasCat(exposureDataId, exposure, refCat, refCatInBand, refWcs, idPackerName, footprintData)

Generate a measurement catalog.

Parameters:
exposureDataId : DataId

Butler dataId for this exposure.

exposure : lsst.afw.image.exposure.Exposure

Exposure to generate the catalog for.

refCat : lsst.afw.table.SourceCatalog

Catalog of shapes and positions at which to force photometry.

refCatInBand : lsst.afw.table.SourceCatalog

Catalog of shapes and position in the band forced photometry is currently being performed

refWcs : lsst.afw.image.SkyWcs

Reference world coordinate system.

idPackerName : str

Type of ID packer to construct from the registry.

footprintData : ScarletDataModel or lsst.afw.table.SourceCatalog

Either the scarlet data models or the deblended catalog containing footprints. If footprintData is None then the footprints contained in refCatInBand are used.

Returns:
measCat : lsst.afw.table.SourceCatalog

Catalog of forced sources to measure.

expId : int

Unique binary id associated with the input exposure

Raises:
LookupError

Raised if a footprint with a given source id was in the reference catalog but not in the reference catalog in band (meaning there was some sort of mismatch in the two input catalogs)

getAllSchemaCatalogs() → Dict[str, Any]

Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.

Returns:
schemacatalogs : dict

Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.

Notes

This method may be called on any task in the hierarchy; it will return the same answer, regardless.

The default implementation should always suffice. If your subtask uses schemas the override Task.getSchemaCatalogs, not this method.

getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata

Get metadata for all tasks.

Returns:
metadata : TaskMetadata

The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.

Notes

The returned metadata includes timing information (if @timer.timeMethod is used) and any metadata set by the task. The name of each item consists of the full task name with . replaced by :, followed by . and the name of the item, e.g.:

topLevelTaskName:subtaskName:subsubtaskName.itemName

using : in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.

getFullName() → str

Get the task name as a hierarchical name including parent task names.

Returns:
fullName : str

The full name consists of the name of the parent task and each subtask separated by periods. For example:

  • The full name of top-level task “top” is simply “top”.
  • The full name of subtask “sub” of top-level task “top” is “top.sub”.
  • The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
getName() → str

Get the name of the task.

Returns:
taskName : str

Name of the task.

See also

getFullName
getResourceConfig() → Optional[ResourceConfig]

Return resource configuration for this task.

Returns:
Object of type ResourceConfig or None if resource
configuration is not defined for this task.
getSchemaCatalogs()

The schema catalogs that will be used by this task.

Returns:
schemaCatalogs : dict

Dictionary mapping dataset type to schema catalog.

Notes

There is only one schema for each type of forced measurement. The dataset type for this measurement is defined in the mapper.

getTaskDict() → Dict[str, weakref]

Get a dictionary of all tasks as a shallow copy.

Returns:
taskDict : dict

Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.

classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField

Make a lsst.pex.config.ConfigurableField for this task.

Parameters:
doc : str

Help text for the field.

Returns:
configurableField : lsst.pex.config.ConfigurableField

A ConfigurableField for this task.

Examples

Provides a convenient way to specify this task is a subtask of another task.

Here is an example of use:

class OtherTaskConfig(lsst.pex.config.Config):
    aSubtask = ATaskClass.makeField("brief description of task")
makeSubtask(name: str, **keyArgs) → None

Create a subtask as a new instance as the name attribute of this task.

Parameters:
name : str

Brief name of the subtask.

keyArgs

Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:

  • “config”.
  • “parentTask”.

Notes

The subtask must be defined by Task.config.name, an instance of ConfigurableField or RegistryField.

run(measCat, exposure, refCat, refWcs, exposureId=None)

Perform forced measurement on a single exposure.

Parameters:
measCat : lsst.afw.table.SourceCatalog

The measurement catalog, based on the sources listed in the reference catalog.

exposure : lsst.afw.image.Exposure

The measurement image upon which to perform forced detection.

refCat : lsst.afw.table.SourceCatalog

The reference catalog of sources to measure.

refWcs : lsst.afw.image.SkyWcs

The WCS for the references.

exposureId : int

Optional unique exposureId used for random seed in measurement task.

Returns:
result : ~`lsst.pipe.base.Struct`

Structure with fields:

measCat

Catalog of forced measurement results (lsst.afw.table.SourceCatalog).

runQuantum(butlerQC, inputRefs, outputRefs)

Method to do butler IO and or transforms to provide in memory objects for tasks run method

Parameters:
butlerQC : ButlerQuantumContext

A butler which is specialized to operate in the context of a lsst.daf.butler.Quantum.

inputRefs : InputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined input/prerequisite connections.

outputRefs : OutputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined output connections.

timer(name: str, logLevel: int = 10) → Iterator[None]

Context manager to log performance data for an arbitrary block of code.

Parameters:
name : str

Name of code being timed; data will be logged using item name: Start and End.

logLevel

A logging level constant.

See also

timer.logInfo

Examples

Creating a timer context:

with self.timer("someCodeToTime"):
    pass  # code to time