Mag¶
-
class
lsst.pipe.tasks.functors.Mag(col, calib=None, **kwargs)¶ Bases:
lsst.pipe.tasks.functors.FunctorCompute calibrated magnitude
Takes a
calibargument, which returns the flux at mag=0 ascalib.getFluxMag0(). If not provided, then the defaultfluxMag0is 63095734448.0194, which is default for HSC. This default should be removed in DM-21955This calculation hides warnings about invalid values and dividing by zero.
As for all functors, a
datasetandfiltkwarg should be provided upon initialization. Unlike the defaultFunctor, however, the default dataset for aMagis'meas', rather than'ref'.Parameters: - col :
str Name of flux column from which to compute magnitude. Can be parseable by
lsst.pipe.tasks.functors.fluxNamefunction—that is, you can pass'modelfit_CModel'instead of'modelfit_CModel_instFlux') and it will understand.- calib :
lsst.afw.image.calib.Calib(optional) Object that knows zero point.
Attributes Summary
columnsColumns required to perform calculation nameFull name of functor (suitable for figure labels) noDupshortnameShort name of functor (suitable for column name/dict key) Methods Summary
__call__(data[, dropna])Call self as a function. difference(data1, data2, **kwargs)Computes difference between functor called on two different ParquetTable objects fail(df)multilevelColumns(data[, columnIndex, …])Returns columns needed by functor from multilevel dataset Attributes Documentation
-
columns¶ Columns required to perform calculation
-
name¶ Full name of functor (suitable for figure labels)
-
noDup¶
-
shortname¶ Short name of functor (suitable for column name/dict key)
Methods Documentation
-
__call__(data, dropna=False)¶ Call self as a function.
-
difference(data1, data2, **kwargs)¶ Computes difference between functor called on two different ParquetTable objects
-
fail(df)¶
-
multilevelColumns(data, columnIndex=None, returnTuple=False)¶ Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
MultilevelParquetTableorDeferredDatasetHandleneed to be passed either a list of tuples or a dictionary.Parameters: - data :
MultilevelParquetTableorDeferredDatasetHandle - columnIndex (optional): pandas `Index` object
either passed or read in from
DeferredDatasetHandle.- `returnTuple` : bool
If true, then return a list of tuples rather than the column dictionary specification. This is set to
TruebyCompositeFunctorin order to be able to combine columns from the various component functors.
- data :
- col :