TransformCatalogBaseTask¶
- 
class lsst.pipe.tasks.postprocess.TransformCatalogBaseTask(*args, **kwargs)¶
- Bases: - lsst.pipe.base.PipelineTask- Base class for transforming/standardizing a catalog - by applying functors that convert units and apply calibrations. The purpose of this task is to perform a set of computations on an input - ParquetTabledataset (such as- deepCoadd_obj) and write the results to a new dataset (which needs to be declared in an- outputDatasetattribute).- The calculations to be performed are defined in a YAML file that specifies a set of functors to be computed, provided as a - --functorFileconfig parameter. An example of such a YAML file is the following:- funcs:
- psfMag:
- functor: Mag args: - base_PsfFlux
 - filt: HSC-G dataset: meas 
- cmodel_magDiff:
- functor: MagDiff args: - modelfit_CModel
- base_PsfFlux
 - filt: HSC-G 
- gauss_magDiff:
- functor: MagDiff args: - base_GaussianFlux
- base_PsfFlux
 - filt: HSC-G 
- count:
- functor: Column args: - base_InputCount_value
 - filt: HSC-G 
- deconvolved_moments:
- functor: DeconvolvedMoments filt: HSC-G dataset: forced_src
 
- refFlags:
- calib_psfUsed
- merge_measurement_i
- merge_measurement_r
- merge_measurement_z
- merge_measurement_y
- merge_measurement_g
- base_PixelFlags_flag_inexact_psfCenter
- detect_isPrimary
 
 - The names for each entry under “func” will become the names of columns in the output dataset. All the functors referenced are defined in - lsst.pipe.tasks.functors. Positional arguments to be passed to each functor are in the- argslist, and any additional entries for each column other than “functor” or “args” (e.g.,- 'filt',- 'dataset') are treated as keyword arguments to be passed to the functor initialization.- The “flags” entry is the default shortcut for - Columnfunctors. All columns listed under “flags” will be copied to the output table untransformed. They can be of any datatype. In the special case of transforming a multi-level oject table with band and dataset indices (deepCoadd_obj), these will be taked from the- measdataset and exploded out per band.- There are two special shortcuts that only apply when transforming multi-level Object (deepCoadd_obj) tables: - The “refFlags” entry is shortcut for Columnfunctor taken from the'ref'dataset if transforming an ObjectTable.
- The “forcedFlags” entry is shortcut for Columnfunctors. taken from theforced_srcdataset if transforming an ObjectTable. These are expanded out per band.
 - This task uses the - lsst.pipe.tasks.postprocess.PostprocessAnalysisobject to organize and excecute the calculations.- Attributes Summary - ConfigClass- canMultiprocess- inputDataset- outputDataset- Methods Summary - emptyMetadata()- Empty (clear) the metadata for this Task and all sub-Tasks. - getAllSchemaCatalogs()- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - getAnalysis(parq[, funcs, band])- getFullMetadata()- Get metadata for all tasks. - getFullName()- Get the task name as a hierarchical name including parent task names. - getFunctors()- getName()- Get the name of the task. - getResourceConfig()- Return resource configuration for this task. - getSchemaCatalogs()- Get the schemas generated by this task. - getTaskDict()- Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- run(parq[, funcs, dataId, band])- Do postprocessing calculations - runQuantum(butlerQC, inputRefs, outputRefs)- Method to do butler IO and or transforms to provide in memory objects for tasks run method - timer(name, logLevel)- Context manager to log performance data for an arbitrary block of code. - transform(band, parq, funcs, dataId)- Attributes Documentation - 
ConfigClass¶
 - 
canMultiprocess= True¶
 - 
inputDataset¶
 - 
outputDataset¶
 - Methods Documentation - 
emptyMetadata() → None¶
- Empty (clear) the metadata for this Task and all sub-Tasks. 
 - 
getAllSchemaCatalogs() → Dict[str, Any]¶
- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - Returns: - schemacatalogs : dict
- Keys are butler dataset type, values are a empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
 - Notes - This method may be called on any task in the hierarchy; it will return the same answer, regardless. - The default implementation should always suffice. If your subtask uses schemas the override - Task.getSchemaCatalogs, not this method.
- schemacatalogs : 
 - 
getAnalysis(parq, funcs=None, band=None)¶
 - 
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶
- Get metadata for all tasks. - Returns: - metadata : TaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- metadata : 
 - 
getFullName() → str¶
- Get the task name as a hierarchical name including parent task names. - Returns: - fullName : str
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
 
 
- fullName : 
 - 
getFunctors()¶
 - 
getResourceConfig() → Optional[ResourceConfig]¶
- Return resource configuration for this task. - Returns: - Object of type ResourceConfigorNoneif resource
- configuration is not defined for this task.
 
- Object of type 
 - 
getSchemaCatalogs() → Dict[str, Any]¶
- Get the schemas generated by this task. - Returns: - schemaCatalogs : dict
- Keys are butler dataset type, values are an empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for this task.
 - See also - Task.getAllSchemaCatalogs
 - Notes - Warning - Subclasses that use schemas must override this method. The default implementation returns an empty dict. - This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data. - Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well. 
- schemaCatalogs : 
 - 
getTaskDict() → Dict[str, weakref]¶
- Get a dictionary of all tasks as a shallow copy. - Returns: - taskDict : dict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict : 
 - 
classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters: - doc : str
- Help text for the field. 
 - Returns: - configurableField : lsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
- doc : 
 - 
makeSubtask(name: str, **keyArgs) → None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters: - name : str
- Brief name of the subtask. 
- keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - “config”.
- “parentTask”.
 
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
- name : 
 - 
run(parq, funcs=None, dataId=None, band=None)¶
- Do postprocessing calculations - Takes a - ParquetTableobject and dataId, returns a dataframe with results of postprocessing calculations.- Parameters: - parq : lsst.pipe.tasks.parquetTable.ParquetTable
- ParquetTable from which calculations are done. 
- funcs : lsst.pipe.tasks.functors.Functors
- Functors to apply to the table’s columns 
- dataId : dict, optional
- Used to add a - patchIdcolumn to the output dataframe.
- band : str, optional
- Filter band that is being processed. 
- Returns
- ——
- df : pandas.DataFrame
 
- parq : 
 - 
runQuantum(butlerQC, inputRefs, outputRefs)¶
- Method to do butler IO and or transforms to provide in memory objects for tasks run method - Parameters: - butlerQC : ButlerQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- inputRefs : InputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.
- outputRefs : OutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC : 
 - 
timer(name: str, logLevel: int = 10) → Iterator[None]¶
- Context manager to log performance data for an arbitrary block of code. - Parameters: - See also - timer.logInfo
 - Examples - Creating a timer context: - with self.timer("someCodeToTime"): pass # code to time 
 - 
transform(band, parq, funcs, dataId)¶