CpFlatNormalizationTask¶
CpFlatNormalizationTask determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask runs these operations:
- Combine the set of background measurements for all input exposures for all detectors into a matrix
B[exposure, detector]. - Iteratively solve for two vectors
E[exposure]andG[detector]whose Cartesian product are the best fit toB[exposure, detector].
Python API summary¶
from lsst.cp.pipe.cpFlatNormTask import CpFlatNormalizationTask
-
class
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)CpFlatNormalizationTask Rescale merged flat frames to remove unequal screen illumination
...
-
attribute
config Access configuration fields and retargetable subtasks.
See also
See the CpFlatNormalizationTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
lsst.pipe.base.config.Connections- Field type
ConfigField
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
'DETECTOR'- Field type
strChoiceField(optional)- Choices
'DETECTOR'- Correct using full detector statistics.
'AMP'- Correct using individual amplifiers.
None- Field is optional
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
saveMetadata¶
Flag to enable/disable metadata saving for a task, enabled by default.