CpFlatNormalizationTask¶
- 
class lsst.cp.pipe.cpFlatNormTask.CpFlatNormalizationTask(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶
- Bases: - lsst.pipe.base.PipelineTask- Rescale merged flat frames to remove unequal screen illumination. - Attributes Summary - canMultiprocess- Methods Summary - emptyMetadata()- Empty (clear) the metadata for this Task and all sub-Tasks. - getAllSchemaCatalogs()- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - getFullMetadata()- Get metadata for all tasks. - getFullName()- Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - getResourceConfig()- Return resource configuration for this task. - getSchemaCatalogs()- Get the schemas generated by this task. - getTaskDict()- Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- measureScales(bgMatrix[, bgCounts, iterations])- Convert backgrounds to exposure and detector components. - run(inputMDs, inputDims, camera)- Normalize FLAT exposures to a consistent level. - runQuantum(butlerQC, inputRefs, outputRefs)- Method to do butler IO and or transforms to provide in memory objects for tasks run method - timer(name, logLevel)- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - 
canMultiprocess= True¶
 - Methods Documentation - 
emptyMetadata() → None¶
- Empty (clear) the metadata for this Task and all sub-Tasks. 
 - 
getAllSchemaCatalogs() → Dict[str, Any]¶
- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - Returns: - schemacatalogs : dict
- Keys are butler dataset type, values are a empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
 - Notes - This method may be called on any task in the hierarchy; it will return the same answer, regardless. - The default implementation should always suffice. If your subtask uses schemas the override - Task.getSchemaCatalogs, not this method.
- schemacatalogs : 
 - 
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶
- Get metadata for all tasks. - Returns: - metadata : TaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- metadata : 
 - 
getFullName() → str¶
- Get the task name as a hierarchical name including parent task names. - Returns: - fullName : str
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
 
 
- fullName : 
 - 
getResourceConfig() → Optional[ResourceConfig]¶
- Return resource configuration for this task. - Returns: - Object of type ResourceConfigorNoneif resource
- configuration is not defined for this task.
 
- Object of type 
 - 
getSchemaCatalogs() → Dict[str, Any]¶
- Get the schemas generated by this task. - Returns: - schemaCatalogs : dict
- Keys are butler dataset type, values are an empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for this task.
 - See also - Task.getAllSchemaCatalogs
 - Notes - Warning - Subclasses that use schemas must override this method. The default implementation returns an empty dict. - This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data. - Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well. 
- schemaCatalogs : 
 - 
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns: - taskDict : dict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict : 
 - 
classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters: - doc : str
- Help text for the field. 
 - Returns: - configurableField : lsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
- doc : 
 - 
makeSubtask(name: str, **keyArgs) → None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters: - name : str
- Brief name of the subtask. 
- keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - “config”.
- “parentTask”.
 
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
- name : 
 - 
measureScales(bgMatrix, bgCounts=None, iterations=10)¶
- Convert backgrounds to exposure and detector components. - Parameters: - bgMatrix : np.ndarray, (nDetectors, nExposures)
- Input backgrounds indexed by exposure (axis=0) and detector (axis=1). 
- bgCounts : np.ndarray, (nDetectors, nExposures), optional
- Input pixel counts used to in measuring bgMatrix, indexed identically. 
- iterations : int, optional
- Number of iterations to use in decomposition. 
 - Returns: - scaleResult : lsst.pipe.base.Struct
- Result struct containing fields: - vectorE
- Output E vector of exposure level scalings ( - np.array, (nExposures)).
- vectorG
- Output G vector of detector level scalings ( - np.array, (nExposures)).
- bgModel
- Expected model bgMatrix values, calculated from E and G ( - np.ndarray, (nDetectors, nExposures)).
 
 - Notes - The set of background measurements B[exposure, detector] of flat frame data should be defined by a “Cartesian” product of two vectors, E[exposure] and G[detector]. The E vector represents the total flux incident on the focal plane. In a perfect camera, this is simply the sum along the columns of B (np.sum(B, axis=0)). - However, this simple model ignores differences in detector gains, the vignetting of the detectors, and the illumination pattern of the source lamp. The G vector describes these detector dependent differences, which should be identical over different exposures. For a perfect lamp of unit total intensity, this is simply the sum along the rows of B (np.sum(B, axis=1)). This algorithm divides G by the total flux level, to provide the relative (not absolute) scales between detectors. - The algorithm here, from pipe_drivers/constructCalibs.py and from there from Eugene Magnier/PanSTARRS [1], attempts to iteratively solve this decomposition from initial “perfect” E and G vectors. The operation is performed in log space to reduce the multiply and divides to linear additions and subtractions. - References - [1] - https://svn.pan-starrs.ifa.hawaii.edu/trac/ipp/browser/trunk/psModules/src/detrend/pmFlatNormalize.c # noqa: W505, E501 
- bgMatrix : 
 - 
run(inputMDs, inputDims, camera)¶
- Normalize FLAT exposures to a consistent level. - Parameters: - Returns: - Raises: - KeyError
- Raised if the input dimensions do not contain detector and exposure, or if the metadata does not contain the expected statistic entry. 
 
 - 
runQuantum(butlerQC, inputRefs, outputRefs)¶
- Method to do butler IO and or transforms to provide in memory objects for tasks run method - Parameters: - butlerQC : ButlerQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- inputRefs : InputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.
- outputRefs : OutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC : 
 - 
timer(name: str, logLevel: int = 10) → Iterator[None]¶
- Context manager to log performance data for an arbitrary block of code. - Parameters: - See also - timer.logInfo
 - Examples - Creating a timer context: - with self.timer("someCodeToTime"): pass # code to time 
 
-