OverscanCorrectionTask¶
-
class
lsst.ip.isr.OverscanCorrectionTask(statControl=None, **kwargs)¶ Bases:
lsst.pipe.base.TaskCorrection task for overscan.
This class contains a number of utilities that are easier to understand and use when they are not embedded in nested if/else loops.
Parameters: - statControl :
lsst.afw.math.StatisticsControl, optional Statistics control object.
Methods Summary
broadcastFitToImage(overscanValue, imageArray)Broadcast 0 or 1 dimension fit to appropriate shape. collapseArray(maskedArray)Collapse overscan array (and mask) to a 1-D vector of values. collapseArrayMedian(maskedArray)Collapse overscan array (and mask) to a 1-D vector of using the correct integer median of row-values. correctOverscan(exposure, amp, imageBBox, …)debugView(image, model[, amp])Debug display for the final overscan solution. emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. fitOverscan(overscanImage[, isTransposed])getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getImageArray(image)Extract the numpy array from the input image. getName()Get the name of the task. getTaskDict()Get a dictionary of all tasks as a shallow copy. integerConvert(image)Return an integer version of the input image. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.maskExtrapolated(collapsed)Create mask if edges are extrapolated. maskOutliers(imageArray)Mask outliers in a row of overscan data from a robust sigma clipping procedure. measureConstantOverscan(image)Measure a constant overscan value. measureVectorOverscan(image[, isTransposed])Calculate the 1-d vector overscan from the input overscan image. run(exposure, amp[, isTransposed])Measure and remove an overscan from an amplifier image. splineEval(indices, interp)Wrapper function to match spline evaluation API to polynomial fit API. splineFit(indices, collapsed, numBins)Wrapper function to match spline fit API to polynomial fit API. timer(name, logLevel)Context manager to log performance data for an arbitrary block of code. trimOverscan(exposure, amp, bbox, …[, …])Trim overscan region to remove edges. Methods Documentation
-
broadcastFitToImage(overscanValue, imageArray, transpose=False)¶ Broadcast 0 or 1 dimension fit to appropriate shape.
Parameters: - overscanValue :
numpy.ndarray, (Nrows, ) or scalar Overscan fit to broadcast.
- imageArray :
numpy.ndarray, (Nrows, Ncols) Image array that we want to match.
- transpose :
bool, optional Switch order to broadcast along the other axis.
Returns: - overscanModel :
numpy.ndarray, (Nrows, Ncols) or scalar Expanded overscan fit.
Raises: - RuntimeError
Raised if no axis has the appropriate dimension.
- overscanValue :
-
static
collapseArray(maskedArray)¶ Collapse overscan array (and mask) to a 1-D vector of values.
Parameters: - maskedArray :
numpy.ma.masked_array Masked array of input overscan data.
Returns: - collapsed :
numpy.ma.masked_array Single dimensional overscan data, combined with the mean.
- maskedArray :
-
collapseArrayMedian(maskedArray)¶ Collapse overscan array (and mask) to a 1-D vector of using the correct integer median of row-values.
Parameters: - maskedArray :
numpy.ma.masked_array Masked array of input overscan data.
Returns: - collapsed :
numpy.ma.masked_array Single dimensional overscan data, combined with the afwMath median.
- maskedArray :
-
correctOverscan(exposure, amp, imageBBox, overscanBBox, isTransposed=True)¶
-
debugView(image, model, amp=None)¶ Debug display for the final overscan solution.
Parameters: - image :
lsst.afw.image.Image Input image the overscan solution was determined from.
- model :
numpy.ndarrayorfloat Overscan model determined for the image.
- amp :
lsst.afw.cameraGeom.Amplifier, optional Amplifier to extract diagnostic information.
- image :
-
emptyMetadata() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
fitOverscan(overscanImage, isTransposed=False)¶
-
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getImageArray(image)¶ Extract the numpy array from the input image.
Parameters: - image :
lsst.afw.image.Imageorlsst.afw.image.MaskedImage Image data to pull array from.
- calcImage :
numpy.ndarray Image data array for numpy operating.
- image :
-
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
static
integerConvert(image)¶ Return an integer version of the input image.
Parameters: - image :
numpy.ndarray,lsst.afw.image.ImageorMaskedImage Image to convert to integers.
Returns: - outI :
numpy.ndarray,lsst.afw.image.ImageorMaskedImage The integer converted image.
Raises: - RuntimeError
Raised if the input image could not be converted.
- image :
-
classmethod
makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
static
maskExtrapolated(collapsed)¶ Create mask if edges are extrapolated.
Parameters: - collapsed :
numpy.ma.masked_array Masked array to check the edges of.
Returns: - maskArray :
numpy.ndarray Boolean numpy array of pixels to mask.
- collapsed :
-
maskOutliers(imageArray)¶ Mask outliers in a row of overscan data from a robust sigma clipping procedure.
Parameters: - imageArray :
numpy.ndarray Image to filter along numpy axis=1.
Returns: - maskedArray :
numpy.ma.masked_array Masked image marking outliers.
- imageArray :
-
measureConstantOverscan(image)¶ Measure a constant overscan value.
Parameters: - image :
lsst.afw.image.Imageorlsst.afw.image.MaskedImage Image data to measure the overscan from.
Returns: - results :
lsst.pipe.base.Struct Overscan result with entries: -
overscanValue: Overscan value to subtract (float) -isTransposed: Orientation of the overscan (bool)
- image :
-
measureVectorOverscan(image, isTransposed=False)¶ Calculate the 1-d vector overscan from the input overscan image.
Parameters: - image :
lsst.afw.image.MaskedImage Image containing the overscan data.
- isTransposed :
bool If true, the image has been transposed.
Returns: - results :
lsst.pipe.base.Struct Overscan result with entries:
overscanValueOverscan value to subtract (
float)maskArrayList of rows that should be masked as
SUSPECTwhen the overscan solution is applied. (list[bool])isTransposedIndicates if the overscan data was transposed during calcuation, noting along which axis the overscan should be subtracted. (
bool)
- image :
-
run(exposure, amp, isTransposed=False)¶ Measure and remove an overscan from an amplifier image.
Parameters: - exposure :
lsst.afw.image.Exposure Image data that will have the overscan corrections applied.
- amp :
lsst.afw.cameraGeom.Amplifier Amplifier to use for debugging purposes.
- isTransposed :
bool, optional Is the image transposed, such that serial and parallel overscan regions are reversed? Default is False.
Returns: - overscanResults :
lsst.pipe.base.Struct Result struct with components:
imageFitValue or fit subtracted from the amplifier image data (scalar or
lsst.afw.image.Image).overscanFitValue or fit subtracted from the serial overscan image data (scalar or
lsst.afw.image.Image).overscanImageImage of the serial overscan region with the serial overscan correction applied (
lsst.afw.image.Image). This quantity is used to estimate the amplifier read noise empirically.parallelOverscanFitValue or fit subtracted from the parallel overscan image data (scalar,
lsst.afw.image.Image, or None).parallelOverscanImageImage of the parallel overscan region with the parallel overscan correction applied (
lsst.afw.image.Imageor None).
Raises: - RuntimeError
Raised if an invalid overscan type is set.
- exposure :
-
static
splineEval(indices, interp)¶ Wrapper function to match spline evaluation API to polynomial fit API.
Parameters: - indices :
numpy.ndarray Locations to evaluate the spline.
- interp :
lsst.afw.math.interpolate Interpolation object to use.
Returns: - values :
numpy.ndarray Evaluated spline values at each index.
- indices :
-
splineFit(indices, collapsed, numBins)¶ Wrapper function to match spline fit API to polynomial fit API.
Parameters: - indices :
numpy.ndarray Locations to evaluate the spline.
- collapsed :
numpy.ndarray Collapsed overscan values corresponding to the spline evaluation points.
- numBins :
int Number of bins to use in constructing the spline.
Returns: - interp :
lsst.afw.math.Interpolate Interpolation object for later evaluation.
- indices :
-
timer(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-
trimOverscan(exposure, amp, bbox, skipLeading, skipTrailing, transpose=False)¶ Trim overscan region to remove edges.
Parameters: - exposure :
lsst.afw.image.Exposure Exposure containing data.
- amp :
lsst.afw.cameraGeom.Amplifier Amplifier containing geometry information.
- bbox :
lsst.geom.Box2I Bounding box of the overscan region.
- skipLeading :
int Number of leading (towards data region) rows/columns to skip.
- skipTrailing :
int Number of trailing (away from data region) rows/columns to skip.
- transpose :
bool, optional Operate on the transposed array.
Returns: - overscanArray :
numpy.array, (N, M) Data array to fit.
- overscanMask :
numpy.array, (N, M) Data mask.
- exposure :
- statControl :