MatchFakesTask¶
-
class
lsst.pipe.tasks.matchFakes.
MatchFakesTask
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶ Bases:
lsst.pipe.base.PipelineTask
Match a pre-existing catalog of fakes to a catalog of detections on a difference image.
This task is generally for injected sources that cannot be easily identified by their footprints such as in the case of detector sources post image differencing.
Attributes Summary
canMultiprocess
Methods Summary
composeFakeCat
(fakeCats, skyMap)Concatenate the fakeCats from tracts that may cover the exposure. emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getName
()Get the name of the task. getResourceConfig
()Return resource configuration for this task. getTaskDict
()Get a dictionary of all tasks as a shallow copy. getVisitMatchedFakeCat
(fakeCat, exposure)Trim the fakeCat to select particular visit makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.run
(fakeCats, skyMap, diffIm, …)Compose fakes into a single catalog and match fakes to detected diaSources within a difference image bound. runQuantum
(butlerQC, inputRefs, outputRefs)Method to do butler IO and or transforms to provide in memory objects for tasks run method timer
(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess
= True¶
Methods Documentation
-
composeFakeCat
(fakeCats, skyMap)¶ Concatenate the fakeCats from tracts that may cover the exposure.
Parameters: - fakeCats :
list
oflst.daf.butler.DeferredDatasetHandle
Set of fake cats to concatenate.
- skyMap :
lsst.skymap.SkyMap
SkyMap defining the geometry of the tracts and patches.
Returns: - combinedFakeCat :
pandas.DataFrame
All fakes that cover the inner polygon of the tracts in this quantum.
- fakeCats :
-
emptyMetadata
() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getFullMetadata
() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig
() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfig
orNone
if resource - configuration is not defined for this task.
- Object of type
-
getTaskDict
() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
getVisitMatchedFakeCat
(fakeCat, exposure)¶ Trim the fakeCat to select particular visit
Parameters: - fakeCat :
pandas.core.frame.DataFrame
The catalog of fake sources to add to the exposure
- exposure :
lsst.afw.image.exposure.exposure.ExposureF
The exposure to add the fake sources to
Returns: - movingFakeCat :
pandas.DataFrame
All fakes that belong to the visit
- fakeCat :
-
classmethod
makeField
(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask
(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.- name :
-
run
(fakeCats, skyMap, diffIm, associatedDiaSources)¶ Compose fakes into a single catalog and match fakes to detected diaSources within a difference image bound.
Parameters: - fakeCats :
pandas.DataFrame
List of catalog of fakes to match to detected diaSources.
- skyMap :
lsst.skymap.SkyMap
SkyMap defining the tracts and patches the fakes are stored over.
- diffIm :
lsst.afw.image.Exposure
Difference image where
associatedDiaSources
were detected.- associatedDiaSources :
pandas.DataFrame
Catalog of difference image sources detected in
diffIm
.
Returns: - result :
lsst.pipe.base.Struct
Results struct with components.
matchedDiaSources
: Fakes matched to input diaSources. Has length offakeCat
. (pandas.DataFrame
)
- fakeCats :
-
runQuantum
(butlerQC: lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext, inputRefs: lsst.pipe.base.connections.InputQuantizedConnection, outputRefs: lsst.pipe.base.connections.OutputQuantizedConnection) → None¶ Method to do butler IO and or transforms to provide in memory objects for tasks run method
Parameters: - butlerQC :
ButlerQuantumContext
A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum
.- inputRefs :
InputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined input/prerequisite connections.- outputRefs :
OutputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined output connections.
- butlerQC :
-
timer
(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-