LeastSquares¶
- 
class 
lsst.afw.math.LeastSquares¶ Bases:
pybind11_builtins.pybind11_objectAttributes Summary
DIRECT_SVDNORMAL_CHOLESKYNORMAL_EIGENSYSTEMMethods Summary
fromDesignMatrix(design, data, factorization)fromNormalEquations(fisher, rhs, factorization)getCovariance(self)getDiagnostic(self, arg0)getDimension(self)getFactorization(self)getFisherMatrix(self)getRank(self)getSolution(self)getThreshold(self)setDesignMatrix(self, arg0, arg1)setNormalEquations(self, arg0, arg1)setThreshold(self, arg0)Attributes Documentation
- 
DIRECT_SVD= <Factorization.DIRECT_SVD: 2>¶ 
- 
NORMAL_CHOLESKY= <Factorization.NORMAL_CHOLESKY: 1>¶ 
- 
NORMAL_EIGENSYSTEM= <Factorization.NORMAL_EIGENSYSTEM: 0>¶ 
Methods Documentation
- 
static 
fromDesignMatrix(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) → lsst.afw.math.LeastSquares¶ 
- 
static 
fromNormalEquations(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) → lsst.afw.math.LeastSquares¶ 
- 
getCovariance(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶ 
- 
getDiagnostic(self: lsst.afw.math.LeastSquares, arg0: lsst.afw.math.LeastSquares.Factorization) → numpy.ndarray¶ 
- 
getDimension(self: lsst.afw.math.LeastSquares) → int¶ 
- 
getFactorization(self: lsst.afw.math.LeastSquares) → lsst.afw.math.LeastSquares.Factorization¶ 
- 
getFisherMatrix(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶ 
- 
getRank(self: lsst.afw.math.LeastSquares) → int¶ 
- 
getSolution(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶ 
- 
getThreshold(self: lsst.afw.math.LeastSquares) → float¶ 
- 
setDesignMatrix(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶ 
- 
setNormalEquations(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶ 
- 
setThreshold(self: lsst.afw.math.LeastSquares, arg0: float) → None¶ 
-