CpFlatNormalizationTask¶
CpFlatNormalizationTask
determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask
runs these operations:
- Combine the set of background measurements for all input exposures for all detectors into a matrix
B[exposure, detector]
. - Iteratively solve for two vectors
E[exposure]
andG[detector]
whose Cartesian product are the best fit toB[exposure, detector]
.
Python API summary¶
from lsst.cp.pipe.cpFlatNormTask import CpFlatNormalizationTask
-
class
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)CpFlatNormalizationTask
Rescale merged flat frames to remove unequal screen illumination
...
-
attribute
config
Access configuration fields and retargetable subtasks.
See also
See the CpFlatNormalizationTask
API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
lsst.pipe.base.config.Connections
- Field type
ConfigField
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
'DETECTOR'
- Field type
str
ChoiceField
(optional)- Choices
'DETECTOR'
- Correct using full detector statistics.
'AMP'
- Correct using individual amplifiers.
None
- Field is optional
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
saveMetadata¶
Flag to enable/disable metadata saving for a task, enabled by default.