ButlerLogRecords¶
-
class
lsst.daf.butler.ButlerLogRecords¶ Bases:
pydantic.main.BaseModelClass representing a collection of
ButlerLogRecord.Attributes Summary
copyDuplicate a model, optionally choose which fields to include, exclude and change. dictGenerate a dictionary representation of the model, optionally specifying which fields to include or exclude. jsonGenerate a JSON representation of the model, includeandexcludearguments as perdict().log_formatMethods Summary
append(value, …)clear()construct(_fields_set, None] = None, **values)Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. extend(records, …)from_file(filename)Read records from file. from_orm(obj)from_raw(serialized, bytes])Parse raw serialized form and return records. from_records(records)Create collection from iterable. from_stream(stream)Read records from I/O stream. insert(index, value, …)parse_file(path, pathlib.Path], *, …)parse_obj(obj)parse_raw(b, bytes], *, content_type, …)pop(index)reverse()schema(by_alias, ref_template)schema_json(*, by_alias, ref_template, …)set_log_format(format, None])Set the log format string for these records. update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns. validate(value)Attributes Documentation
-
copy¶ Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters: - include – fields to include in new model
- exclude – fields to exclude from new model, as with values this takes precedence over include
- update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
- deep – set to
Trueto make a deep copy of the model
Returns: new model instance
-
dict¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
json¶ Generate a JSON representation of the model,
includeandexcludearguments as perdict().encoderis an optional function to supply asdefaultto json.dumps(), other arguments as perjson.dumps().
-
log_format¶
Methods Documentation
-
append(value: Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]) → None¶
-
clear() → None¶
-
classmethod
construct(_fields_set: Optional[SetStr, None] = None, **values) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'was set since it adds all passed values
-
extend(records: Iterable[Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]]) → None¶
-
classmethod
from_file(filename: str) → lsst.daf.butler.core.logging.ButlerLogRecords¶ Read records from file.
Parameters: - filename :
str Name of file containing the JSON records.
Notes
Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.
- filename :
-
classmethod
from_orm(obj: Any) → Model¶
-
classmethod
from_raw(serialized: Union[str, bytes]) → lsst.daf.butler.core.logging.ButlerLogRecords¶ Parse raw serialized form and return records.
Parameters:
-
classmethod
from_records(records: Iterable[lsst.daf.butler.core.logging.ButlerLogRecord]) → lsst.daf.butler.core.logging.ButlerLogRecords¶ Create collection from iterable.
Parameters: - records : iterable of
ButlerLogRecord The records to seed this class with.
- records : iterable of
-
classmethod
from_stream(stream: IO) → lsst.daf.butler.core.logging.ButlerLogRecords¶ Read records from I/O stream.
Parameters: - stream :
typing.IO Stream from which to read JSON records.
Notes
Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.
- stream :
-
insert(index: int, value: Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]) → None¶
-
classmethod
parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj(obj: Any) → Model¶
-
classmethod
parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
pop(index: int = -1) → lsst.daf.butler.core.logging.ButlerLogRecord¶
-
reverse() → None¶
-
classmethod
schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs) → unicode¶
-
set_log_format(format: Optional[str, None]) → Optional[str, None]¶ Set the log format string for these records.
Parameters: Returns: - old_format :
str, optional The previous log format.
- old_format :
-
classmethod
update_forward_refs(**localns) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate(value: Any) → Model¶
-