CollectionSummary¶
- 
class lsst.daf.butler.registry.CollectionSummary(dataset_types: lsst.daf.butler.core.named.NamedValueSet[lsst.daf.butler.core.datasets.type.DatasetType] = <factory>, governors: dict = <factory>)¶
- Bases: - object- A summary of the datasets that can be found in a collection. - Methods Summary - add_data_ids(dataset_type, data_ids)- Include the given dataset type and data IDs in the summary. - add_data_ids_generator(dataset_type, data_ids)- Include the given dataset type and data IDs in the summary, yielding them back as a generator. - add_datasets(refs)- Include the given datasets in the summary. - add_datasets_generator(refs)- Include the given datasets in the summary, yielding them back as a generator. - copy()- Return a deep copy of this object. - is_compatible_with(dataset_type, dimensions, …)- Test whether the collection summarized by this object should be queried for a given dataset type and governor dimension values. - union()- Construct a summary that contains all dataset types and governor dimension values in any of the inputs. - update(*args)- Update this summary with dataset types and governor dimension values from other summaries. - Methods Documentation - 
add_data_ids(dataset_type: lsst.daf.butler.core.datasets.type.DatasetType, data_ids: Iterable[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate]) → None¶
- Include the given dataset type and data IDs in the summary. - Parameters: - dataset_type : DatasetType
- Dataset type to include. 
- data_ids : Iterable[DataCoordinate]
- Data IDs to include. 
 
- dataset_type : 
 - 
add_data_ids_generator(dataset_type: lsst.daf.butler.core.datasets.type.DatasetType, data_ids: Iterable[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate]) → Generator[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, None, None]¶
- Include the given dataset type and data IDs in the summary, yielding them back as a generator. - Parameters: - dataset_type : DatasetType
- Dataset type to include. 
- data_ids : Iterable[DataCoordinate]
- Data IDs to include. 
 - Yields: - data_id : DataCoordinate
- The same data IDs originally passed in. 
 - Notes - As a generator, this method does nothing if its return iterator is not used. Call - add_data_idsinstead to avoid this; this method is intended for the case where the given iterable may be single-pass and a copy is not desired, but other processing needs to be done on its elements.
- dataset_type : 
 - 
add_datasets(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Include the given datasets in the summary. - Parameters: - refs : Iterable[DatasetRef]
- Datasets to include. 
 
- refs : 
 - 
add_datasets_generator(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → Generator[lsst.daf.butler.core.datasets.ref.DatasetRef, None, None]¶
- Include the given datasets in the summary, yielding them back as a generator. - Parameters: - refs : Iterable[DatasetRef]
- Datasets to include. 
 - Yields: - ref : DatasetRef
- The same dataset references originally passed in. 
 - Notes - As a generator, this method does nothing if its return iterator is not used. Call - add_datasetsinstead to avoid this; this method is intended for the case where the given iterable may be single-pass and a copy is not desired, but other processing needs to be done on its elements.
- refs : 
 - 
copy() → lsst.daf.butler.registry._collection_summary.CollectionSummary¶
- Return a deep copy of this object. - Returns: - copy : CollectionSummary
- A copy of - selfthat can be modified without modifying- selfat all.
 
- copy : 
 - 
is_compatible_with(dataset_type: lsst.daf.butler.core.datasets.type.DatasetType, dimensions: Mapping[str, AbstractSet[str]], rejections: Optional[List[str], None] = None, name: Optional[str, None] = None) → bool¶
- Test whether the collection summarized by this object should be queried for a given dataset type and governor dimension values. - Parameters: - dataset_type : DatasetType
- Dataset type being queried. If this collection has no instances of this dataset type (or its parent dataset type, if it is a component), - Falsewill always be returned.
- dimensions : Mapping
- Bounds on the values governor dimensions can take in the query, usually from a WHERE expression, as a mapping from dimension name to a set of - strgovernor dimension values.
- rejections : list[str], optional
- If provided, a list that will be populated with a log- or exception-friendly message explaining why this dataset is incompatible with this collection when - Falseis returned.
- name : str, optional
- Name of the collection this object summarizes, for use in messages appended to - rejections. Ignored if- rejectionsis- None.
 - Returns: 
- dataset_type : 
 - 
union() → lsst.daf.butler.registry._collection_summary.CollectionSummary¶
- Construct a summary that contains all dataset types and governor dimension values in any of the inputs. - Parameters: - *args : CollectionSummary
- Summaries to combine. 
 - Returns: - unioned : CollectionSummary
- New summary object that represents the union of the given ones. 
 
- *args : 
 - 
update(*args) → None¶
- Update this summary with dataset types and governor dimension values from other summaries. - Parameters: - *args : CollectionSummary
- Summaries to include in - self.
 
- *args : 
 
-