ButlerLogRecords¶
- 
class lsst.daf.butler.ButlerLogRecords¶
- Bases: - pydantic.main.BaseModel- Class representing a collection of - ButlerLogRecord.- Attributes Summary - copy- Duplicate a model, optionally choose which fields to include, exclude and change. - dict- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - json- Generate a JSON representation of the model, - includeand- excludearguments as per- dict().- log_format- Methods Summary - append(value, …)- clear()- construct(_fields_set, None] = None, **values)- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. - extend(records, …)- from_file(filename)- Read records from file. - from_orm(obj)- from_raw(serialized, bytes])- Parse raw serialized form and return records. - from_records(records)- Create collection from iterable. - from_stream(stream)- Read records from I/O stream. - insert(index, value, …)- parse_file(path, pathlib.Path], *, …)- parse_obj(obj)- parse_raw(b, bytes], *, content_type, …)- pop(index)- reverse()- schema(by_alias, ref_template)- schema_json(*, by_alias, ref_template, …)- set_log_format(format, None])- Set the log format string for these records. - update_forward_refs(**localns)- Try to update ForwardRefs on fields based on this Model, globalns and localns. - validate(value)- Attributes Documentation - 
copy¶
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters: - include – fields to include in new model
- exclude – fields to exclude from new model, as with values this takes precedence over include
- update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
- deep – set to Trueto make a deep copy of the model
 - Returns: - new model instance 
 - 
dict¶
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. 
 - 
json¶
- Generate a JSON representation of the model, - includeand- excludearguments as per- dict().- encoderis an optional function to supply as- defaultto json.dumps(), other arguments as per- json.dumps().
 - 
log_format¶
 - Methods Documentation - 
append(value: Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]) → None¶
 - 
clear() → None¶
 - 
classmethod construct(_fields_set: Optional[SetStr, None] = None, **values) → Model¶
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if - Config.extra = 'allow'was set since it adds all passed values
 - 
extend(records: Iterable[Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]]) → None¶
 - 
classmethod from_file(filename: str) → lsst.daf.butler.core.logging.ButlerLogRecords¶
- Read records from file. - Parameters: - filename : str
- Name of file containing the JSON records. 
 - Notes - Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model. 
- filename : 
 - 
classmethod from_orm(obj: Any) → Model¶
 - 
classmethod from_raw(serialized: Union[str, bytes]) → lsst.daf.butler.core.logging.ButlerLogRecords¶
- Parse raw serialized form and return records. - Parameters: 
 - 
classmethod from_records(records: Iterable[lsst.daf.butler.core.logging.ButlerLogRecord]) → lsst.daf.butler.core.logging.ButlerLogRecords¶
- Create collection from iterable. - Parameters: - records : iterable of ButlerLogRecord
- The records to seed this class with. 
 
- records : iterable of 
 - 
classmethod from_stream(stream: IO) → lsst.daf.butler.core.logging.ButlerLogRecords¶
- Read records from I/O stream. - Parameters: - stream : typing.IO
- Stream from which to read JSON records. 
 - Notes - Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model. 
- stream : 
 - 
insert(index: int, value: Union[logging.LogRecord, lsst.daf.butler.core.logging.ButlerLogRecord]) → None¶
 - 
classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
 - 
classmethod parse_obj(obj: Any) → Model¶
 - 
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
 - 
pop(index: int = -1) → lsst.daf.butler.core.logging.ButlerLogRecord¶
 - 
reverse() → None¶
 - 
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
 - 
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs) → unicode¶
 - 
set_log_format(format: Optional[str, None]) → Optional[str, None]¶
- Set the log format string for these records. - Parameters: - Returns: - old_format : str, optional
- The previous log format. 
 
- old_format : 
 - 
classmethod update_forward_refs(**localns) → None¶
- Try to update ForwardRefs on fields based on this Model, globalns and localns. 
 - 
classmethod validate(value: Any) → Model¶
 
-