SimulatedModel¶
- 
class lsst.cp.pipe.SimulatedModel¶
- Bases: - lsst.cp.pipe.OverscanModel- Simulated overscan model. - Methods Summary - difference(params, signal, data, error, …)- Calculate the flattened difference array between model and data. - loglikelihood(params, signal, data, error, …)- Calculate log likelihood of the model. - model_results(params, signal, num_transfers, amp)- Generate a realization of the overscan model, using the specified fit parameters and input signal. - negative_loglikelihood(params, signal, data, …)- Calculate negative log likelihood of the model. - rms_error(params, signal, data, error, …)- Calculate RMS error between model and data. - Methods Documentation - 
difference(params, signal, data, error, *args, **kwargs)¶
- Calculate the flattened difference array between model and data. - Parameters: - params : lmfit.Parameters
- Object containing the model parameters. 
- signal : np.ndarray, (nMeasurements)
- Array of image means. 
- data : np.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- error : float
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 - Returns: - difference : np.ndarray, (nMeasurements*nCols)
- The rms error between the model and input data. 
 
- params : 
 - 
loglikelihood(params, signal, data, error, *args, **kwargs)¶
- Calculate log likelihood of the model. - Parameters: - params : lmfit.Parameters
- Object containing the model parameters. 
- signal : np.ndarray, (nMeasurements)
- Array of image means. 
- data : np.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- error : float
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 - Returns: - logL : float
- The log-likelihood of the observed data given the model parameters. 
 
- params : 
 - 
static model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)¶
- Generate a realization of the overscan model, using the specified fit parameters and input signal. - Parameters: - params : lmfit.Parameters
- Object containing the model parameters. 
- signal : np.ndarray, (nMeasurements)
- Array of image means. 
- num_transfers : int
- Number of serial transfers that the charge undergoes. 
- amp : lsst.afw.cameraGeom.Amplifier
- Amplifier to use for geometry information. 
- start : int, optional
- First overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box. 
- stop : int, optional
- Last overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box. 
- trap_type : str, optional
- Type of trap model to use. 
 - Returns: - results : np.ndarray, (nMeasurements, nCols)
- Model results. 
 
- params : 
 - 
negative_loglikelihood(params, signal, data, error, *args, **kwargs)¶
- Calculate negative log likelihood of the model. - Parameters: - params : lmfit.Parameters
- Object containing the model parameters. 
- signal : np.ndarray, (nMeasurements)
- Array of image means. 
- data : np.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- error : float
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 - Returns: - negativelogL : float
- The negative log-likelihood of the observed data given the model parameters. 
 
- params : 
 - 
rms_error(params, signal, data, error, *args, **kwargs)¶
- Calculate RMS error between model and data. - Parameters: - params : lmfit.Parameters
- Object containing the model parameters. 
- signal : np.ndarray, (nMeasurements)
- Array of image means. 
- data : np.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- error : float
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 - Returns: - rms : float
- The rms error between the model and input data. 
 
- params : 
 
-