SpherePoint

class lsst.geom.SpherePoint

Bases: pybind11_builtins.pybind11_object

Methods Summary

atPole(self)
bearingTo(self, other)
getDec(self)
getLatitude(self)
getLongitude(self)
getPosition(self, units)
getRa(self)
getTangentPlaneOffset(self, other)
getVector(self)
isFinite(self)
offset(self, bearing, amount)
rotated(self, axis, amount)
separation(self, other)
toUnitXYZ(*[, longitude, latitude, ra, dec]) Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude.

Methods Documentation

atPole(self: lsst.geom.SpherePoint) → bool
bearingTo(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → lsst.geom.Angle
getDec(self: lsst.geom.SpherePoint) → lsst.geom.Angle
getLatitude(self: lsst.geom.SpherePoint) → lsst.geom.Angle
getLongitude(self: lsst.geom.SpherePoint) → lsst.geom.Angle
getPosition(self: lsst.geom.SpherePoint, units: lsst.geom.AngleUnit) → lsst.geom.Point2D
getRa(self: lsst.geom.SpherePoint) → lsst.geom.Angle
getTangentPlaneOffset(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → Tuple[lsst.geom.Angle, lsst.geom.Angle]
getVector(self: lsst.geom.SpherePoint) → lsst.sphgeom._sphgeom.UnitVector3d
isFinite(self: lsst.geom.SpherePoint) → bool
offset(self: lsst.geom.SpherePoint, bearing: lsst.geom.Angle, amount: lsst.geom.Angle) → lsst.geom.SpherePoint
rotated(self: lsst.geom.SpherePoint, axis: lsst.geom.SpherePoint, amount: lsst.geom.Angle) → lsst.geom.SpherePoint
separation(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → lsst.geom.Angle
static toUnitXYZ(*, longitude=None, latitude=None, ra=None, dec=None, units)

Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude.

Parameters:
longitude : float or numpy.ndarray

Longitude coordinate of input points.

latitude : float or numpy.ndarray

Latitude coordinate of input points.

ra : float or numpy.ndarray

Synonym for longitude.

dec : float or numpy.ndarray

Synonym for latitude.

units : AngleUnit

Angle unit for inputs.

Returns:
x : float or numpy.ndarray`

X coordinates of unit 3-vectors.

y : float or numpy.ndarray`

Y coordinates of unit 3-vectors.

z : float or numpy.ndarray`

Z coordinates of unit 3-vectors.

Notes

The returned Cartesian coordinate values are not guaranteed to be normalized according to the conventions of sphgeom.UnitVector3d, but are nevertheless compatible with the various vectorized contains methods in sphgeom because those apply that normalization internally.