SkyMeasurementTask¶
-
class
lsst.pipe.tasks.background.SkyMeasurementTask(config: Optional[Config] = None, name: Optional[str] = None, parentTask: Optional[Task] = None, log: Optional[Union[logging.Logger, lsst.utils.logging.LsstLogAdapter]] = None)¶ Bases:
lsst.pipe.base.TaskTask for creating, persisting and using sky frames
A sky frame is like a fringe frame (the sum of many exposures of the night sky, combined with rejection to remove astrophysical objects) except the structure is on larger scales, and hence we bin the images and represent them as a background model (a
lsst.afw.math.BackgroundMI). The sky frame represents the dominant response of the camera to the sky background.Methods Summary
averageBackgrounds(bgList)Average multiple background models backgroundToExposure(statsImage, bbox)Convert a background model to an exposure emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. exposureToBackground(bgExp)Convert an exposure to background model getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getName()Get the name of the task. getTaskDict()Get a dictionary of all tasks as a shallow copy. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.measureBackground(image)Measure a background model for image measureScale(image, skyBackground)Measure scale of background model in image solveScales(scales)Solve multiple scales for a single scale factor subtractSkyFrame(image, skyBackground, scale)Subtract sky frame from science image timer(name, logLevel)Context manager to log performance data for an arbitrary block of code. Methods Documentation
-
averageBackgrounds(bgList)¶ Average multiple background models
The input background models should be a
BackgroundListconsisting of a singleBackgroundMI.Parameters: - bgList :
listoflsst.afw.math.BackgroundList Background models to average.
Returns: - bgExp :
lsst.afw.image.Exposure Background model in Exposure format.
- bgList :
-
backgroundToExposure(statsImage, bbox)¶ Convert a background model to an exposure
Calibs need to be persisted as an Exposure, so we need to convert the background model to an Exposure.
Parameters: - statsImage :
lsst.afw.image.MaskedImageF Background model’s statistics image.
- bbox :
lsst.geom.Box2I Bounding box for image.
Returns: - exp :
lsst.afw.image.Exposure Background model in Exposure format.
- statsImage :
-
emptyMetadata() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
static
exposureToBackground(bgExp)¶ Convert an exposure to background model
Calibs need to be persisted as an Exposure, so we need to convert the persisted Exposure to a background model.
Parameters: - bgExp :
lsst.afw.image.Exposure Background model in Exposure format.
Returns: - bg :
lsst.afw.math.BackgroundList Background model
- bgExp :
-
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
measureBackground(image)¶ Measure a background model for image
This doesn’t use a full-featured background model (e.g., no Chebyshev approximation) because we just want the binning behaviour. This will allow us to average the bins later (
averageBackgrounds).The
BackgroundMIis wrapped in aBackgroundListso it can be pickled and persisted.Parameters: - image :
lsst.afw.image.MaskedImage Image for which to measure background.
Returns: - bgModel :
lsst.afw.math.BackgroundList Background model.
- image :
-
measureScale(image, skyBackground)¶ Measure scale of background model in image
We treat the sky frame much as we would a fringe frame (except the length scale of the variations is different): we measure samples on the input image and the sky frame, which we will use to determine the scaling factor in the ‘solveScales` method.
Parameters: - image :
lsst.afw.image.Exposureorlsst.afw.image.MaskedImage Science image for which to measure scale.
- skyBackground :
lsst.afw.math.BackgroundList Sky background model.
Returns: - imageSamples :
numpy.ndarray Sample measurements on image.
- skySamples :
numpy.ndarray Sample measurements on sky frame.
- image :
-
solveScales(scales)¶ Solve multiple scales for a single scale factor
Having measured samples from the image and sky frame, we fit for the scaling factor.
Parameters: - scales :
listof atupleof twonumpy.ndarrayarrays A
listof the results frommeasureScalemethod.
Returns: - scale :
float Scale factor.
- scales :
-
subtractSkyFrame(image, skyBackground, scale, bgList=None)¶ Subtract sky frame from science image
Parameters: - image :
lsst.afw.image.Exposureorlsst.afw.image.MaskedImage Science image.
- skyBackground :
lsst.afw.math.BackgroundList Sky background model.
- scale :
float Scale to apply to background model.
- bgList :
lsst.afw.math.BackgroundList List of backgrounds applied to image
- image :
-
timer(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-