BrighterFatterKernelSolveTask¶
- 
class lsst.cp.pipe.BrighterFatterKernelSolveTask(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶
- Bases: - lsst.pipe.base.PipelineTask- Measure appropriate Brighter-Fatter Kernel from the PTC dataset. - Attributes Summary - canMultiprocess- Methods Summary - averageCorrelations(xCorrList, name)- Average input correlations. - emptyMetadata()- Empty (clear) the metadata for this Task and all sub-Tasks. - getFullMetadata()- Get metadata for all tasks. - getFullName()- Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - getResourceConfig()- Return resource configuration for this task. - getTaskDict()- Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- quadraticCorrelations(xCorrList, fluxList, name)- Measure a quadratic correlation model. - run(inputPtc, dummy, camera, inputDims)- Combine covariance information from PTC into brighter-fatter kernels. - runQuantum(butlerQC, inputRefs, outputRefs)- Ensure that the input and output dimensions are passed along. - successiveOverRelax(source[, maxIter, eLevel])- An implementation of the successive over relaxation (SOR) method. - timer(name, logLevel)- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - 
canMultiprocess= True¶
 - Methods Documentation - 
averageCorrelations(xCorrList, name)¶
- Average input correlations. - Parameters: - xCorrList : list[numpy.array]
- List of cross-correlations. These are expected to be square arrays. 
- name : str
- Name for log messages. 
 - Returns: - meanXcorr : numpy.array, (N, N)
- The averaged cross-correlation. 
 
- xCorrList : 
 - 
emptyMetadata() → None¶
- Empty (clear) the metadata for this Task and all sub-Tasks. 
 - 
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶
- Get metadata for all tasks. - Returns: - metadata : TaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- metadata : 
 - 
getFullName() → str¶
- Get the task name as a hierarchical name including parent task names. - Returns: - fullName : str
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
 
 
- fullName : 
 - 
getResourceConfig() → Optional[ResourceConfig]¶
- Return resource configuration for this task. - Returns: - Object of type ResourceConfigorNoneif resource
- configuration is not defined for this task.
 
- Object of type 
 - 
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns: - taskDict : dict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict : 
 - 
classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters: - doc : str
- Help text for the field. 
 - Returns: - configurableField : lsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
- doc : 
 - 
makeSubtask(name: str, **keyArgs) → None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters: - name : str
- Brief name of the subtask. 
- keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - “config”.
- “parentTask”.
 
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
- name : 
 - 
quadraticCorrelations(xCorrList, fluxList, name)¶
- Measure a quadratic correlation model. - Parameters: - xCorrList : list[numpy.array]
- List of cross-correlations. These are expected to be square arrays. 
- fluxList : numpy.array, (Nflux,)
- Associated list of fluxes. 
- name : str
- Name for log messages. 
 - Returns: - meanXcorr : numpy.array, (N, N)
- The averaged cross-correlation. 
 
- xCorrList : 
 - 
run(inputPtc, dummy, camera, inputDims)¶
- Combine covariance information from PTC into brighter-fatter kernels. - Parameters: - inputPtc : lsst.ip.isr.PhotonTransferCurveDataset
- PTC data containing per-amplifier covariance measurements. 
- dummy : lsst.afw.image.Exposure
- The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option. 
- camera : lsst.afw.cameraGeom.Camera
- Camera to use for camera geometry information. 
- inputDims : lsst.daf.butler.DataCoordinateordict
- DataIds to use to populate the output calibration. 
 - Returns: - results : lsst.pipe.base.Struct
- The resulst struct containing: - outputBfk
- Resulting Brighter-Fatter Kernel ( - lsst.ip.isr.BrighterFatterKernel).
 
 
- inputPtc : 
 - 
runQuantum(butlerQC, inputRefs, outputRefs)¶
- Ensure that the input and output dimensions are passed along. - Parameters: - butlerQC : lsst.daf.butler.butlerQuantumContext.ButlerQuantumContext
- Butler to operate on. 
- inputRefs : lsst.pipe.base.InputQuantizedConnection
- Input data refs to load. 
- ouptutRefs : lsst.pipe.base.OutputQuantizedConnection
- Output data refs to persist. 
 
- butlerQC : 
 - 
successiveOverRelax(source, maxIter=None, eLevel=None)¶
- An implementation of the successive over relaxation (SOR) method. - A numerical method for solving a system of linear equations with faster convergence than the Gauss-Seidel method. - Parameters: - source : numpy.ndarray, (N, N)
- The input array. 
- maxIter : int, optional
- Maximum number of iterations to attempt before aborting. 
- eLevel : float, optional
- The target error level at which we deem convergence to have occurred. 
 - Returns: - output : numpy.ndarray, (N, N)
- The solution. 
 
- source : 
 - 
timer(name: str, logLevel: int = 10) → Iterator[None]¶
- Context manager to log performance data for an arbitrary block of code. - Parameters: - See also - timer.logInfo
 - Examples - Creating a timer context: - with self.timer("someCodeToTime"): pass # code to time 
 
-