LeastSquares¶
-
class
lsst.afw.math.
LeastSquares
¶ Bases:
pybind11_builtins.pybind11_object
Attributes Summary
DIRECT_SVD
NORMAL_CHOLESKY
NORMAL_EIGENSYSTEM
Methods Summary
fromDesignMatrix
(design, data, factorization)fromNormalEquations
(fisher, rhs, factorization)getCovariance
(self)getDiagnostic
(self, arg0)getDimension
(self)getFactorization
(self)getFisherMatrix
(self)getRank
(self)getSolution
(self)getThreshold
(self)setDesignMatrix
(self, arg0, arg1)setNormalEquations
(self, arg0, arg1)setThreshold
(self, arg0)Attributes Documentation
-
DIRECT_SVD
= <Factorization.DIRECT_SVD: 2>¶
-
NORMAL_CHOLESKY
= <Factorization.NORMAL_CHOLESKY: 1>¶
-
NORMAL_EIGENSYSTEM
= <Factorization.NORMAL_EIGENSYSTEM: 0>¶
Methods Documentation
-
static
fromDesignMatrix
(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) → lsst.afw.math.LeastSquares¶
-
static
fromNormalEquations
(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) → lsst.afw.math.LeastSquares¶
-
getCovariance
(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶
-
getDiagnostic
(self: lsst.afw.math.LeastSquares, arg0: lsst.afw.math.LeastSquares.Factorization) → numpy.ndarray¶
-
getDimension
(self: lsst.afw.math.LeastSquares) → int¶
-
getFactorization
(self: lsst.afw.math.LeastSquares) → lsst.afw.math.LeastSquares.Factorization¶
-
getFisherMatrix
(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶
-
getRank
(self: lsst.afw.math.LeastSquares) → int¶
-
getSolution
(self: lsst.afw.math.LeastSquares) → numpy.ndarray¶
-
getThreshold
(self: lsst.afw.math.LeastSquares) → float¶
-
setDesignMatrix
(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶
-
setNormalEquations
(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶
-
setThreshold
(self: lsst.afw.math.LeastSquares, arg0: float) → None¶
-