BrighterFatterKernelSolveTask¶
-
class
lsst.cp.pipe.BrighterFatterKernelSolveTask(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶ Bases:
lsst.pipe.base.PipelineTaskMeasure appropriate Brighter-Fatter Kernel from the PTC dataset.
Attributes Summary
canMultiprocessMethods Summary
averageCorrelations(xCorrList, name)Average input correlations. emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getName()Get the name of the task. getResourceConfig()Return resource configuration for this task. getTaskDict()Get a dictionary of all tasks as a shallow copy. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.quadraticCorrelations(xCorrList, fluxList, name)Measure a quadratic correlation model. run(inputPtc, dummy, camera, inputDims)Combine covariance information from PTC into brighter-fatter kernels. runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along. successiveOverRelax(source[, maxIter, eLevel])An implementation of the successive over relaxation (SOR) method. timer(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess= True¶
Methods Documentation
-
averageCorrelations(xCorrList, name)¶ Average input correlations.
Parameters: - xCorrList :
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- name :
str Name for log messages.
Returns: - meanXcorr :
numpy.array, (N, N) The averaged cross-correlation.
- xCorrList :
-
emptyMetadata() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfigorNoneif resource - configuration is not defined for this task.
- Object of type
-
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
quadraticCorrelations(xCorrList, fluxList, name)¶ Measure a quadratic correlation model.
Parameters: - xCorrList :
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- fluxList :
numpy.array, (Nflux,) Associated list of fluxes.
- name :
str Name for log messages.
Returns: - meanXcorr :
numpy.array, (N, N) The averaged cross-correlation.
- xCorrList :
-
run(inputPtc, dummy, camera, inputDims)¶ Combine covariance information from PTC into brighter-fatter kernels.
Parameters: - inputPtc :
lsst.ip.isr.PhotonTransferCurveDataset PTC data containing per-amplifier covariance measurements.
- dummy :
lsst.afw.image.Exposure The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- camera :
lsst.afw.cameraGeom.Camera Camera to use for camera geometry information.
- inputDims :
lsst.daf.butler.DataCoordinateordict DataIds to use to populate the output calibration.
Returns: - results :
lsst.pipe.base.Struct The resulst struct containing:
outputBfkResulting Brighter-Fatter Kernel (
lsst.ip.isr.BrighterFatterKernel).
- inputPtc :
-
runQuantum(butlerQC, inputRefs, outputRefs)¶ Ensure that the input and output dimensions are passed along.
Parameters: - butlerQC :
lsst.daf.butler.butlerQuantumContext.ButlerQuantumContext Butler to operate on.
- inputRefs :
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs :
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC :
-
successiveOverRelax(source, maxIter=None, eLevel=None)¶ An implementation of the successive over relaxation (SOR) method.
A numerical method for solving a system of linear equations with faster convergence than the Gauss-Seidel method.
Parameters: - source :
numpy.ndarray, (N, N) The input array.
- maxIter :
int, optional Maximum number of iterations to attempt before aborting.
- eLevel :
float, optional The target error level at which we deem convergence to have occurred.
Returns: - output :
numpy.ndarray, (N, N) The solution.
- source :
-
timer(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-