SimpleModel¶
-
class
lsst.cp.pipe.
SimpleModel
¶ Bases:
lsst.cp.pipe.OverscanModel
Simple analytic overscan model.
Methods Summary
difference
(params, signal, data, error, …)Calculate the flattened difference array between model and data. loglikelihood
(params, signal, data, error, …)Calculate log likelihood of the model. model_results
(params, signal, num_transfers)Generate a realization of the overscan model, using the specified fit parameters and input signal. negative_loglikelihood
(params, signal, data, …)Calculate negative log likelihood of the model. rms_error
(params, signal, data, error, …)Calculate RMS error between model and data. Methods Documentation
-
difference
(params, signal, data, error, *args, **kwargs)¶ Calculate the flattened difference array between model and data.
Parameters: - params :
lmfit.Parameters
Object containing the model parameters.
- signal :
np.ndarray
, (nMeasurements) Array of image means.
- data :
np.ndarray
, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error :
float
Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
Returns: - difference :
np.ndarray
, (nMeasurements*nCols) The rms error between the model and input data.
- params :
-
loglikelihood
(params, signal, data, error, *args, **kwargs)¶ Calculate log likelihood of the model.
Parameters: - params :
lmfit.Parameters
Object containing the model parameters.
- signal :
np.ndarray
, (nMeasurements) Array of image means.
- data :
np.ndarray
, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error :
float
Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
Returns: - logL :
float
The log-likelihood of the observed data given the model parameters.
- params :
-
static
model_results
(params, signal, num_transfers, start=1, stop=10)¶ Generate a realization of the overscan model, using the specified fit parameters and input signal.
Parameters: - params :
lmfit.Parameters
Object containing the model parameters.
- signal :
np.ndarray
, (nMeasurements) Array of image means.
- num_transfers :
int
Number of serial transfers that the charge undergoes.
- start :
int
, optional First overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
- stop :
int
, optional Last overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
Returns: - res :
np.ndarray
, (nMeasurements, nCols) Model results.
- params :
-
negative_loglikelihood
(params, signal, data, error, *args, **kwargs)¶ Calculate negative log likelihood of the model.
Parameters: - params :
lmfit.Parameters
Object containing the model parameters.
- signal :
np.ndarray
, (nMeasurements) Array of image means.
- data :
np.ndarray
, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error :
float
Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
Returns: - negativelogL :
float
The negative log-likelihood of the observed data given the model parameters.
- params :
-
rms_error
(params, signal, data, error, *args, **kwargs)¶ Calculate RMS error between model and data.
Parameters: - params :
lmfit.Parameters
Object containing the model parameters.
- signal :
np.ndarray
, (nMeasurements) Array of image means.
- data :
np.ndarray
, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error :
float
Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
Returns: - rms :
float
The rms error between the model and input data.
- params :
-