SerializedDimensionGraph¶
-
class
lsst.daf.butler.
SerializedDimensionGraph
¶ Bases:
pydantic.main.BaseModel
Simplified model of a
DimensionGraph
suitable for serialization.Attributes Summary
copy
Duplicate a model, optionally choose which fields to include, exclude and change. dict
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. json
Generate a JSON representation of the model, include
andexclude
arguments as perdict()
.Methods Summary
construct
(_fields_set, None] = None, **values)Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. direct
(*, names)Construct a SerializedDimensionGraph
directly without validators.from_orm
(obj)parse_file
(path, pathlib.Path], *, …)parse_obj
(obj)parse_raw
(b, bytes], *, content_type, …)schema
(by_alias, ref_template)schema_json
(*, by_alias, ref_template, …)update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns. validate
(value)Attributes Documentation
-
copy
¶ Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters: - include – fields to include in new model
- exclude – fields to exclude from new model, as with values this takes precedence over include
- update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
- deep – set to
True
to make a deep copy of the model
Returns: new model instance
-
dict
¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
json
¶ Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.encoder
is an optional function to supply asdefault
to json.dumps(), other arguments as perjson.dumps()
.
Methods Documentation
-
classmethod
construct
(_fields_set: Optional[SetStr, None] = None, **values) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'
was set since it adds all passed values
-
classmethod
direct
(*, names: List[str]) → lsst.daf.butler.core.dimensions._graph.SerializedDimensionGraph¶ Construct a
SerializedDimensionGraph
directly without validators.This differs from the pydantic “construct” method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding
direct
methods.This method should only be called when the inputs are trusted.
-
classmethod
from_orm
(obj: Any) → Model¶
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs) → unicode¶
-
classmethod
update_forward_refs
(**localns) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-