FinalizeCharacterizationTask

class lsst.pipe.tasks.finalizeCharacterization.FinalizeCharacterizationTask(initInputs=None, **kwargs)

Bases: lsst.pipe.base.PipelineTask

Run final characterization on exposures.

Attributes Summary

canMultiprocess

Methods Summary

compute_psf_and_ap_corr_map(visit, detector, …) Compute psf model and aperture correction map for a single exposure.
concat_isolated_star_cats(band, …) Concatenate isolated star catalogs and make reserve selection.
emptyMetadata() Empty (clear) the metadata for this Task and all sub-Tasks.
getFullMetadata() Get metadata for all tasks.
getFullName() Get the task name as a hierarchical name including parent task names.
getName() Get the name of the task.
getResourceConfig() Return resource configuration for this task.
getTaskDict() Get a dictionary of all tasks as a shallow copy.
makeField(doc) Make a lsst.pex.config.ConfigurableField for this task.
makeSubtask(name, **keyArgs) Create a subtask as a new instance as the name attribute of this task.
run(visit, band, isolated_star_cat_dict, …) Run the FinalizeCharacterizationTask.
runQuantum(butlerQC, inputRefs, outputRefs) Method to do butler IO and or transforms to provide in memory objects for tasks run method
timer(name, logLevel) Context manager to log performance data for an arbitrary block of code.

Attributes Documentation

canMultiprocess = True

Methods Documentation

compute_psf_and_ap_corr_map(visit, detector, exposure, src, isolated_source_table)

Compute psf model and aperture correction map for a single exposure.

Parameters:
visit : int

Visit number (for logging).

detector : int

Detector number (for logging).

exposure : lsst.afw.image.ExposureF
src : lsst.afw.table.SourceCatalog
isolated_source_table : np.ndarray
Returns:
psf : lsst.meas.algorithms.ImagePsf

PSF Model

ap_corr_map : lsst.afw.image.ApCorrMap

Aperture correction map.

measured_src : lsst.afw.table.SourceCatalog

Updated source catalog with measurements, flags and aperture corrections.

concat_isolated_star_cats(band, isolated_star_cat_dict, isolated_star_source_dict)

Concatenate isolated star catalogs and make reserve selection.

Parameters:
band : str

Band name. Used to select reserved stars.

isolated_star_cat_dict : dict

Per-tract dict of isolated star catalog handles.

isolated_star_source_dict : dict

Per-tract dict of isolated star source catalog handles.

Returns:
isolated_table : np.ndarray (N,)

Table of isolated stars, with indexes to isolated sources.

isolated_source_table : np.ndarray (M,)

Table of isolated sources, with indexes to isolated stars.

emptyMetadata() → None

Empty (clear) the metadata for this Task and all sub-Tasks.

getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata

Get metadata for all tasks.

Returns:
metadata : TaskMetadata

The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.

Notes

The returned metadata includes timing information (if @timer.timeMethod is used) and any metadata set by the task. The name of each item consists of the full task name with . replaced by :, followed by . and the name of the item, e.g.:

topLevelTaskName:subtaskName:subsubtaskName.itemName

using : in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.

getFullName() → str

Get the task name as a hierarchical name including parent task names.

Returns:
fullName : str

The full name consists of the name of the parent task and each subtask separated by periods. For example:

  • The full name of top-level task “top” is simply “top”.
  • The full name of subtask “sub” of top-level task “top” is “top.sub”.
  • The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
getName() → str

Get the name of the task.

Returns:
taskName : str

Name of the task.

See also

getFullName
getResourceConfig() → Optional[ResourceConfig]

Return resource configuration for this task.

Returns:
Object of type ResourceConfig or None if resource
configuration is not defined for this task.
getTaskDict() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]

Get a dictionary of all tasks as a shallow copy.

Returns:
taskDict : dict

Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.

classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField

Make a lsst.pex.config.ConfigurableField for this task.

Parameters:
doc : str

Help text for the field.

Returns:
configurableField : lsst.pex.config.ConfigurableField

A ConfigurableField for this task.

Examples

Provides a convenient way to specify this task is a subtask of another task.

Here is an example of use:

class OtherTaskConfig(lsst.pex.config.Config):
    aSubtask = ATaskClass.makeField("brief description of task")
makeSubtask(name: str, **keyArgs) → None

Create a subtask as a new instance as the name attribute of this task.

Parameters:
name : str

Brief name of the subtask.

keyArgs

Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:

  • “config”.
  • “parentTask”.

Notes

The subtask must be defined by Task.config.name, an instance of ConfigurableField or RegistryField.

run(visit, band, isolated_star_cat_dict, isolated_star_source_dict, src_dict, calexp_dict)

Run the FinalizeCharacterizationTask.

Parameters:
visit : int

Visit number. Used in the output catalogs.

band : str

Band name. Used to select reserved stars.

isolated_star_cat_dict : dict

Per-tract dict of isolated star catalog handles.

isolated_star_source_dict : dict

Per-tract dict of isolated star source catalog handles.

src_dict : dict

Per-detector dict of src catalog handles.

calexp_dict : dict

Per-detector dict of calibrated exposure handles.

Returns:
struct : lsst.pipe.base.struct

Struct with outputs for persistence.

runQuantum(butlerQC, inputRefs, outputRefs)

Method to do butler IO and or transforms to provide in memory objects for tasks run method

Parameters:
butlerQC : ButlerQuantumContext

A butler which is specialized to operate in the context of a lsst.daf.butler.Quantum.

inputRefs : InputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined input/prerequisite connections.

outputRefs : OutputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined output connections.

timer(name: str, logLevel: int = 10) → Iterator[None]

Context manager to log performance data for an arbitrary block of code.

Parameters:
name : str

Name of code being timed; data will be logged using item name: Start and End.

logLevel

A logging level constant.

See also

timer.logInfo

Examples

Creating a timer context:

with self.timer("someCodeToTime"):
    pass  # code to time