Labeller¶
-
class
lsst.pipe.tasks.functors.
Labeller
(filt=None, dataset=None, noDup=None)¶ Bases:
lsst.pipe.tasks.functors.Functor
Main function of this subclass is to override the dropna=True
Attributes Summary
columns
Columns required to perform calculation name
noDup
shortname
Short name of functor (suitable for column name/dict key) Methods Summary
__call__
(parq[, dropna])Call self as a function. difference
(data1, data2, **kwargs)Computes difference between functor called on two different ParquetTable objects fail
(df)multilevelColumns
(data[, columnIndex, …])Returns columns needed by functor from multilevel dataset Attributes Documentation
-
columns
¶ Columns required to perform calculation
-
name
= 'label'¶
-
noDup
¶
-
shortname
¶ Short name of functor (suitable for column name/dict key)
Methods Documentation
-
__call__
(parq, dropna=False, **kwargs)¶ Call self as a function.
-
difference
(data1, data2, **kwargs)¶ Computes difference between functor called on two different ParquetTable objects
-
fail
(df)¶
-
multilevelColumns
(data, columnIndex=None, returnTuple=False)¶ Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
MultilevelParquetTable
orDeferredDatasetHandle
need to be passed either a list of tuples or a dictionary.Parameters: - data :
MultilevelParquetTable
orDeferredDatasetHandle
- columnIndex (optional): pandas `Index` object
either passed or read in from
DeferredDatasetHandle
.- `returnTuple` : bool
If true, then return a list of tuples rather than the column dictionary specification. This is set to
True
byCompositeFunctor
in order to be able to combine columns from the various component functors.
- data :
-