LocalDipoleMeanFlux¶
-
class
lsst.pipe.tasks.functors.
LocalDipoleMeanFlux
(instFluxPosCol, instFluxNegCol, instFluxPosErrCol, instFluxNegErrCol, photoCalibCol, photoCalibErrCol, **kwargs)¶ Bases:
lsst.pipe.tasks.functors.LocalPhotometry
Compute absolute mean of dipole fluxes.
See also
Attributes Summary
columns
Columns required to perform calculation logNJanskyToAB
name
Full name of functor (suitable for figure labels) noDup
shortname
Short name of functor (suitable for column name/dict key) Methods Summary
__call__
(data[, dropna])Call self as a function. difference
(data1, data2, **kwargs)Computes difference between functor called on two different ParquetTable objects fail
(df)instFluxErrToMagnitudeErr
(instFlux, …)Convert instrument flux err to nanojanskys. instFluxErrToNanojanskyErr
(instFlux, …)Convert instrument flux to nanojanskys. instFluxToMagnitude
(instFlux, localCalib)Convert instrument flux to nanojanskys. instFluxToNanojansky
(instFlux, localCalib)Convert instrument flux to nanojanskys. multilevelColumns
(data[, columnIndex, …])Returns columns needed by functor from multilevel dataset Attributes Documentation
-
columns
¶ Columns required to perform calculation
-
logNJanskyToAB
= 31.4¶
-
name
¶ Full name of functor (suitable for figure labels)
-
noDup
¶
-
shortname
¶ Short name of functor (suitable for column name/dict key)
Methods Documentation
-
__call__
(data, dropna=False)¶ Call self as a function.
-
difference
(data1, data2, **kwargs)¶ Computes difference between functor called on two different ParquetTable objects
-
fail
(df)¶
-
instFluxErrToMagnitudeErr
(instFlux, instFluxErr, localCalib, localCalibErr)¶ Convert instrument flux err to nanojanskys.
Parameters: - instFlux :
numpy.ndarray
orpandas.Series
Array of instrument flux measurements
- instFluxErr :
numpy.ndarray
orpandas.Series
Errors on associated
instFlux
values- localCalib :
numpy.ndarray
orpandas.Series
Array of local photometric calibration estimates.
- localCalibErr :
numpy.ndarray
orpandas.Series
Errors on associated
localCalib
values
Returns: - calibMagErr:
numpy.ndarray
orpandas.Series
Error on calibrated AB magnitudes.
- instFlux :
-
instFluxErrToNanojanskyErr
(instFlux, instFluxErr, localCalib, localCalibErr)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarray
orpandas.Series
Array of instrument flux measurements
- instFluxErr :
numpy.ndarray
orpandas.Series
Errors on associated
instFlux
values- localCalib :
numpy.ndarray
orpandas.Series
Array of local photometric calibration estimates.
- localCalibErr :
numpy.ndarray
orpandas.Series
Errors on associated
localCalib
values
Returns: - calibFluxErr :
numpy.ndarray
orpandas.Series
Errors on calibrated flux measurements.
- instFlux :
-
instFluxToMagnitude
(instFlux, localCalib)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarray
orpandas.Series
Array of instrument flux measurements
- localCalib :
numpy.ndarray
orpandas.Series
Array of local photometric calibration estimates.
Returns: - calibMag :
numpy.ndarray
orpandas.Series
Array of calibrated AB magnitudes.
- instFlux :
-
instFluxToNanojansky
(instFlux, localCalib)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarray
orpandas.Series
Array of instrument flux measurements
- localCalib :
numpy.ndarray
orpandas.Series
Array of local photometric calibration estimates.
Returns: - calibFlux :
numpy.ndarray
orpandas.Series
Array of calibrated flux measurements.
- instFlux :
-
multilevelColumns
(data, columnIndex=None, returnTuple=False)¶ Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
MultilevelParquetTable
orDeferredDatasetHandle
need to be passed either a list of tuples or a dictionary.Parameters: - data :
MultilevelParquetTable
orDeferredDatasetHandle
- columnIndex (optional): pandas `Index` object
either passed or read in from
DeferredDatasetHandle
.- `returnTuple` : bool
If true, then return a list of tuples rather than the column dictionary specification. This is set to
True
byCompositeFunctor
in order to be able to combine columns from the various component functors.
- data :
-