LsstTS3Translator

class lsst.obs.lsst.translators.LsstTS3Translator(header: Mapping[str, Any], filename: str | None = None)

Bases: LsstBaseTranslator

Metadata translator for LSST BNL Test Stand 3 data.

Attributes Summary

DETECTOR_MAX

Maximum number of detectors to use when calculating the detector_exposure_id.

DETECTOR_NAME

Fixed name of single sensor.

all_properties

All the valid properties for this translator including extensions.

cameraPolicyFile

Path to policy file relative to obs_lsst root.

default_resource_package

Module name to use to locate the correction resources.

default_resource_root

Default package resource path root to use to locate header correction files within the default_resource_package package.

default_search_path

Default search path to use to locate header correction files.

detectorMapping

Mapping of detector name to detector number and serial.

detectorSerials

Mapping of detector serial number to raft, number, and name.

extensions

Extension properties (str: PropertyDefinition)

name

Name of this translation class

supported_instrument

Name of instrument understood by this translation class.

translators

All registered metadata translation classes.

Methods Summary

are_keys_ok(keywords)

Are the supplied keys all present and defined?

can_translate(header[, filename])

Indicate whether this translation class can translate the supplied header.

can_translate_with_options(header, options)

Helper method for can_translate allowing options.

cards_used()

Cards used during metadata extraction.

compute_detector_exposure_id(exposure_id, ...)

Compute the detector exposure ID from detector number and exposure ID.

compute_detector_info_from_serial(...)

Helper method to return the detector information from the serial.

compute_detector_num_from_name(...)

Helper method to return the detector number from the name.

compute_exposure_id(dateobs[, seqnum, ...])

Helper method to calculate the TS3 exposure_id.

defined_in_this_class(name)

Report if the specified class attribute is defined specifically in this class.

detector_mapping()

Returns the mapping of full name to detector ID and serial.

detector_serials()

Obtain the mapping of detector serial to detector group, name, and number.

determine_translatable_headers(filename[, ...])

Given a file return all the headers usable for metadata translation.

determine_translator(header[, filename])

Determine a translation class by examining the header

fix_header(header, instrument, obsid[, filename])

Apply global fixes to a supplied header.

is_key_ok(keyword)

Return True if the value associated with the named keyword is present in this header and defined.

is_keyword_defined(header, keyword)

Return True if the value associated with the named keyword is present in the supplied header and defined.

is_on_sky()

Determine if this is an on-sky observation.

max_detector_exposure_id()

The maximum detector exposure ID expected to be generated by this instrument.

max_exposure_id()

The maximum exposure ID expected from this instrument.

quantity_from_card(keywords, unit[, ...])

Calculate a Astropy Quantity from a header card and a unit.

resource_root()

Package resource to use to locate correction resources within an installed package.

search_paths()

Search paths to use for LSST data when looking for header correction files.

to_altaz_begin()

Telescope boresight azimuth and elevation at start of observation.

to_boresight_airmass()

Airmass of the boresight of the telescope.

to_boresight_rotation_angle()

Angle of the instrument in boresight_rotation_coord frame.

to_boresight_rotation_coord()

Coordinate frame of the instrument rotation angle (options: sky, unknown).

to_dark_time()

Calculate the dark time.

to_datetime_begin()

Calculate start time of observation.

to_datetime_end()

Calculate end time of observation.

to_detector_exposure_id()

Return value of detector_exposure_id from headers.

to_detector_group()

Return value of detector_group from headers.

to_detector_name()

Name of the detector within the instrument (might not be unique if there are detector groups).

to_detector_num()

Return value of detector_num from headers.

to_detector_serial()

Serial number/string associated with this detector.

to_detector_unique_name()

Return a unique name for the detector.

to_exposure_group()

Calculate the exposure group string.

to_exposure_id()

Generate a unique exposure ID number

to_exposure_time()

Duration of the exposure with shutter open (seconds).

to_focus_z()

Return the defocal distance of the camera in units of mm.

to_group_counter_end()

Return the observation counter of the observation that ends this group.

to_group_counter_start()

Return the observation counter of the observation that began this group.

to_has_simulated_content()

Return a boolean indicating whether any part of the observation was simulated.

to_instrument()

The instrument used to observe the exposure.

to_location()

Location of the observatory.

to_object()

Object of interest or field name.

to_observation_counter()

Return the sequence number within the observing day.

to_observation_id()

Return value of observation_id from headers.

to_observation_reason()

Return the reason this observation was taken.

to_observation_type()

Return value of observation_type from headers.

to_observing_day()

Return the day of observation as YYYYMMDD integer.

to_physical_filter()

The bandpass filter used for this observation.

to_pressure()

Atmospheric pressure outside the dome.

to_relative_humidity()

Relative humidity outside the dome.

to_science_program()

Calculate the science program information.

to_telescope()

Full name of the telescope.

to_temperature()

Temperature outside the dome.

to_tracking_radec()

Requested RA/Dec to track.

to_visit_id()

Generate a unique exposure ID number

translator_version()

Return the version string for this translator class.

validate_value(value, default[, minimum, ...])

Validate the supplied value, returning a new value if out of range

Attributes Documentation

DETECTOR_MAX = 1000

Maximum number of detectors to use when calculating the detector_exposure_id.

Note that because this is the maximum number of detectors, for zero-based detector_num values this is one greater than the maximum detector_num. It is also often rounded up to the nearest power of 10 anyway, to allow detector_exposure_id values to be easily decoded by humans.

DETECTOR_NAME = 'S00'

Fixed name of single sensor.

all_properties: Dict[str, PropertyDefinition] = {'altaz_begin': PropertyDefinition(doc='Telescope boresight azimuth and elevation at start of observation.', str_type='astropy.coordinates.AltAz', py_type=<class 'astropy.coordinates.builtin_frames.altaz.AltAz'>, to_simple=<function altaz_to_simple>, from_simple=<function simple_to_altaz>), 'boresight_airmass': PropertyDefinition(doc='Airmass of the boresight of the telescope.', str_type='float', py_type=<class 'float'>, to_simple=None, from_simple=None), 'boresight_rotation_angle': PropertyDefinition(doc='Angle of the instrument in boresight_rotation_coord frame.', str_type='astropy.coordinates.Angle', py_type=<class 'astropy.coordinates.angles.Angle'>, to_simple=<function angle_to_simple>, from_simple=<function simple_to_angle>), 'boresight_rotation_coord': PropertyDefinition(doc='Coordinate frame of the instrument rotation angle (options: sky, unknown).', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'dark_time': PropertyDefinition(doc='Duration of the exposure with shutter closed (seconds).', str_type='astropy.units.Quantity', py_type=<class 'astropy.units.quantity.Quantity'>, to_simple=<function exptime_to_simple>, from_simple=<function simple_to_exptime>), 'datetime_begin': PropertyDefinition(doc='Time of the start of the observation.', str_type='astropy.time.Time', py_type=<class 'astropy.time.core.Time'>, to_simple=<function datetime_to_simple>, from_simple=<function simple_to_datetime>), 'datetime_end': PropertyDefinition(doc='Time of the end of the observation.', str_type='astropy.time.Time', py_type=<class 'astropy.time.core.Time'>, to_simple=<function datetime_to_simple>, from_simple=<function simple_to_datetime>), 'detector_exposure_id': PropertyDefinition(doc='Unique integer identifier for this detector in this exposure.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'detector_group': PropertyDefinition(doc='Collection name of which this detector is a part. Can be None if there are no detector groupings.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'detector_name': PropertyDefinition(doc='Name of the detector within the instrument (might not be unique if there are detector groups).', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'detector_num': PropertyDefinition(doc='Unique (for instrument) integer identifier for the sensor.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'detector_serial': PropertyDefinition(doc='Serial number/string associated with this detector.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'detector_unique_name': PropertyDefinition(doc='Unique name of the detector within the focal plane, generally combining detector_group with detector_name.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'exposure_group': PropertyDefinition(doc="Label to use to associate this exposure with others (can be related to 'exposure_id').", str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'exposure_id': PropertyDefinition(doc='Unique (with instrument) integer identifier for this observation.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'exposure_time': PropertyDefinition(doc='Duration of the exposure with shutter open (seconds).', str_type='astropy.units.Quantity', py_type=<class 'astropy.units.quantity.Quantity'>, to_simple=<function exptime_to_simple>, from_simple=<function simple_to_exptime>), 'focus_z': PropertyDefinition(doc='Defocal distance.', str_type='astropy.units.Quantity', py_type=<class 'astropy.units.quantity.Quantity'>, to_simple=<function focusz_to_simple>, from_simple=<function simple_to_focusz>), 'group_counter_end': PropertyDefinition(doc='Observation counter for the end of the exposure group. Depending on the instrument the relevant group may be visit_id or exposure_group.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'group_counter_start': PropertyDefinition(doc='Observation counter for the start of the exposure group.Depending on the instrument the relevant group may be visit_id or exposure_group.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'has_simulated_content': PropertyDefinition(doc='Boolean indicating whether any part of this observation was simulated.', str_type='bool', py_type=<class 'bool'>, to_simple=None, from_simple=None), 'instrument': PropertyDefinition(doc='The instrument used to observe the exposure.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'location': PropertyDefinition(doc='Location of the observatory.', str_type='astropy.coordinates.EarthLocation', py_type=<class 'astropy.coordinates.earth.EarthLocation'>, to_simple=<function earthlocation_to_simple>, from_simple=<function simple_to_earthlocation>), 'object': PropertyDefinition(doc='Object of interest or field name.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'observation_counter': PropertyDefinition(doc='Counter of this observation. Can be counter within observing_day or a global counter. Likely to be observatory specific.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'observation_id': PropertyDefinition(doc="Label uniquely identifying this observation (can be related to 'exposure_id').", str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'observation_reason': PropertyDefinition(doc="Reason this observation was taken, or its purpose ('science' and 'calibration' are common values)", str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'observation_type': PropertyDefinition(doc='Type of observation (currently: science, dark, flat, bias, focus).', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'observing_day': PropertyDefinition(doc='Integer in YYYYMMDD format corresponding to the day of observation.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None), 'physical_filter': PropertyDefinition(doc='The bandpass filter used for this observation.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'pressure': PropertyDefinition(doc='Atmospheric pressure outside the dome.', str_type='astropy.units.Quantity', py_type=<class 'astropy.units.quantity.Quantity'>, to_simple=<function pressure_to_simple>, from_simple=<function simple_to_pressure>), 'relative_humidity': PropertyDefinition(doc='Relative humidity outside the dome.', str_type='float', py_type=<class 'float'>, to_simple=None, from_simple=None), 'science_program': PropertyDefinition(doc='Observing program (survey or proposal) identifier.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'telescope': PropertyDefinition(doc='Full name of the telescope.', str_type='str', py_type=<class 'str'>, to_simple=None, from_simple=None), 'temperature': PropertyDefinition(doc='Temperature outside the dome.', str_type='astropy.units.Quantity', py_type=<class 'astropy.units.quantity.Quantity'>, to_simple=<function temperature_to_simple>, from_simple=<function simple_to_temperature>), 'tracking_radec': PropertyDefinition(doc='Requested RA/Dec to track.', str_type='astropy.coordinates.SkyCoord', py_type=<class 'astropy.coordinates.sky_coordinate.SkyCoord'>, to_simple=<function skycoord_to_simple>, from_simple=<function simple_to_skycoord>), 'visit_id': PropertyDefinition(doc='ID of the Visit this Exposure is associated with.\n\nScience observations should essentially always be\nassociated with a visit, but calibration observations\nmay not be.', str_type='int', py_type=<class 'int'>, to_simple=None, from_simple=None)}

All the valid properties for this translator including extensions.

cameraPolicyFile = 'policy/ts3.yaml'

Path to policy file relative to obs_lsst root.

default_resource_package = 'astro_metadata_translator'

Module name to use to locate the correction resources.

default_resource_root: str | None = None

Default package resource path root to use to locate header correction files within the default_resource_package package.

default_search_path: Sequence[str] | None = None

Default search path to use to locate header correction files.

detectorMapping = None

Mapping of detector name to detector number and serial.

detectorSerials = None

Mapping of detector serial number to raft, number, and name.

extensions: Dict[str, PropertyDefinition] = {}

Extension properties (str: PropertyDefinition)

Some instruments have important properties beyond the standard set; this is the place to declare that they exist, and they will be treated in the same way as the standard set, except that their names will everywhere be prefixed with ext_.

Each property is indexed by name (str), with a corresponding PropertyDefinition.

name: str | None = 'LSST-TS3'

Name of this translation class

supported_instrument: str | None = None

Name of instrument understood by this translation class.

translators: Dict[str, Type] = {'DECam': <class 'astro_metadata_translator.translators.decam.DecamTranslator'>, 'HSC': <class 'astro_metadata_translator.translators.hsc.HscTranslator'>, 'LSST-TS3': <class 'lsst.obs.lsst.translators.ts3.LsstTS3Translator'>, 'LSST-TS8': <class 'lsst.obs.lsst.translators.ts8.LsstTS8Translator'>, 'LSST-UCDCam': <class 'lsst.obs.lsst.translators.lsst_ucdcam.LsstUCDCamTranslator'>, 'LSSTCam': <class 'lsst.obs.lsst.translators.lsstCam.LsstCamTranslator'>, 'LSSTCam-PhoSim': <class 'lsst.obs.lsst.translators.phosim.LsstCamPhoSimTranslator'>, 'LSSTCam-imSim': <class 'lsst.obs.lsst.translators.imsim.LsstCamImSimTranslator'>, 'LSSTComCam': <class 'lsst.obs.lsst.translators.comCam.LsstComCamTranslator'>, 'LSST_LATISS': <class 'lsst.obs.lsst.translators.latiss.LatissTranslator'>, 'MegaPrime': <class 'astro_metadata_translator.translators.megaprime.MegaPrimeTranslator'>, 'SDSS': <class 'astro_metadata_translator.translators.sdss.SdssTranslator'>, 'SuprimeCam': <class 'astro_metadata_translator.translators.suprimecam.SuprimeCamTranslator'>}

All registered metadata translation classes.

Methods Documentation

are_keys_ok(keywords: Iterable[str]) bool

Are the supplied keys all present and defined?

Parameters:
keywordsiterable of str

Keywords to test.

Returns:
all_okbool

True if all supplied keys are present and defined.

classmethod can_translate(header, filename=None)

Indicate whether this translation class can translate the supplied header.

There is no usable INSTRUME header in TS3 data. Instead we use the TSTAND header.

Parameters:
headerdict-like

Header to convert to standardized form.

filenamestr, optional

Name of file being translated.

Returns:
canbool

True if the header is recognized by this class. False otherwise.

classmethod can_translate_with_options(header: Mapping[str, Any], options: Dict[str, Any], filename: str | None = None) bool

Helper method for can_translate allowing options.

Parameters:
headerdict-like

Header to convert to standardized form.

optionsdict

Headers to try to determine whether this header can be translated by this class. If a card is found it will be compared with the expected value and will return that comparison. Each card will be tried in turn until one is found.

filenamestr, optional

Name of file being translated.

Returns:
canbool

True if the header is recognized by this class. False otherwise.

Notes

Intended to be used from within can_translate implementations for specific translators. Is not intended to be called directly from determine_translator.

cards_used() FrozenSet[str]

Cards used during metadata extraction.

Returns:
usedfrozenset of str

Cards used when extracting metadata.

classmethod compute_detector_exposure_id(exposure_id, detector_num)

Compute the detector exposure ID from detector number and exposure ID.

This is a helper method to allow code working outside the translator infrastructure to use the same algorithm.

Parameters:
exposure_idint

Unique exposure ID.

detector_numint

Detector number.

Returns:
detector_exposure_idint

The calculated ID.

classmethod compute_detector_info_from_serial(detector_serial)

Helper method to return the detector information from the serial.

Parameters:
detector_serialstr

Detector serial ID.

Returns:
infotuple of (str, str, int)

Detector group, name, and number.

classmethod compute_detector_num_from_name(detector_group, detector_name)

Helper method to return the detector number from the name.

Parameters:
detector_groupstr

Name of the detector grouping. This is generally the raft name.

detector_namestr

Detector name.

Returns:
numint

Detector number.

static compute_exposure_id(dateobs, seqnum=0, controller=None)

Helper method to calculate the TS3 exposure_id.

Parameters:
dateobsstr

Date of observation in FITS ISO format.

seqnumint, unused

Sequence number. Ignored.

controllerstr, unused

Controller type. Ignored.

Returns:
exposure_idint

Exposure ID.

classmethod defined_in_this_class(name: str) bool | None

Report if the specified class attribute is defined specifically in this class.

Parameters:
namestr

Name of the attribute to test.

Returns:
in_classbool

True if there is a attribute of that name defined in this specific subclass. False if the method is not defined in this specific subclass but is defined in a parent class. Returns None if the attribute is not defined anywhere in the class hierarchy (which can happen if translators have typos in their mapping tables).

Notes

Retrieves the attribute associated with the given name. Then looks in all the parent classes to determine whether that attribute comes from a parent class or from the current class. Attributes are compared using id().

classmethod detector_mapping()

Returns the mapping of full name to detector ID and serial.

Returns:
mappingdict of str:tuple

Returns the mapping of full detector name (group+detector) to detector number and serial.

Raises:
ValueError

Raised if no camera policy file has been registered with this translation class.

Notes

Will construct the mapping if none has previously been constructed.

classmethod detector_serials()

Obtain the mapping of detector serial to detector group, name, and number.

Returns:
infodict of tuple of (str, str, int)

A dict with the serial numbers as keys and values of detector group, name, and number.

classmethod determine_translatable_headers(filename: str, primary: MutableMapping[str, Any] | None = None) Iterator[MutableMapping[str, Any]]

Given a file return all the headers usable for metadata translation.

This method can optionally be given a header from the file. This header will generally be the primary header or a merge of the first two headers.

In the base class implementation it is assumed that this supplied header is the only useful header for metadata translation and it will be returned unchanged if given. This can avoid unnecesarily re-opening the file and re-reading the header when the content is already known.

If no header is supplied, a header will be read from the supplied file using read_basic_metadata_from_file, allowing it to merge the primary and secondary header of a multi-extension FITS file. Subclasses can read the header from the data file using whatever technique is best for that instrument.

Subclasses can return multiple headers and ignore the externally supplied header. They can also merge it with another header and return a new derived header if that is required by the particular data file. There is no requirement for the supplied header to be used.

Parameters:
filenamestr

Path to a file in a format understood by this translator.

primarydict-like, optional

The primary header obtained by the caller. This is sometimes already known, for example if a system is trying to bootstrap without already knowing what data is in the file. For many instruments where the primary header is the only relevant header, the primary header will be returned with no further action.

Yields:
headersiterator of dict-like

A header usable for metadata translation. For this base implementation it will be either the supplied primary header or a header read from the file. This implementation will only ever yield a single header.

Notes

Each translator class can have code specifically tailored to its own file format. It is important not to call this method with an incorrect translator class. The normal paradigm is for the caller to have read the first header and then called determine_translator() on the result to work out which translator class to then call to obtain the real headers to be used for translation.

classmethod determine_translator(header: Mapping[str, Any], filename: str | None = None) Type[MetadataTranslator]

Determine a translation class by examining the header

Parameters:
headerdict-like

Representation of a header.

filenamestr, optional

Name of file being translated.

Returns:
translatorMetadataTranslator

Translation class that knows how to extract metadata from the supplied header.

Raises:
ValueError

None of the registered translation classes understood the supplied header.

classmethod fix_header(header: MutableMapping[str, Any], instrument: str, obsid: str, filename: str | None = None) bool

Apply global fixes to a supplied header.

Parameters:
headerdict

The header to correct. Correction is in place.

instrumentstr

The name of the instrument.

obsidstr

Unique observation identifier associated with this header. Will always be provided.

filenamestr, optional

Filename associated with this header. May not be set since headers can be fixed independently of any filename being known.

Returns:
modifiedbool

True if a correction was applied.

Notes

This method is intended to support major discrepancies in headers such as:

  • Periods of time where headers are known to be incorrect in some way that can be fixed either by deriving the correct value from the existing value or understanding the that correction is static for the given time. This requires that the date header is known.

  • The presence of a certain value is always wrong and should be corrected with a new static value regardless of date.

It is assumed that one off problems with headers have been applied before this method is called using the per-obsid correction system.

Usually called from astro_metadata_translator.fix_header.

For log messages, do not assume that the filename will be present. Always write log messages to fall back on using the obsid if filename is None.

is_key_ok(keyword: str | None) bool

Return True if the value associated with the named keyword is present in this header and defined.

Parameters:
keywordstr

Keyword to check against header.

Returns:
is_okbool

True if the header is present and not-None. False otherwise.

static is_keyword_defined(header: Mapping[str, Any], keyword: str | None) bool

Return True if the value associated with the named keyword is present in the supplied header and defined.

Parameters:
headerdict-lik

Header to use as reference.

keywordstr

Keyword to check against header.

Returns:
is_definedbool

True if the header is present and not-None. False otherwise.

is_on_sky()

Determine if this is an on-sky observation.

Returns:
is_on_skybool

Returns True if this is a observation on sky on the summit.

classmethod max_detector_exposure_id()

The maximum detector exposure ID expected to be generated by this instrument.

Returns:
max_idint

The maximum value.

classmethod max_exposure_id()

The maximum exposure ID expected from this instrument.

Returns:
max_exposure_idint

The maximum value.

quantity_from_card(keywords: str | Sequence[str], unit: Unit, default: float | None = None, minimum: float | None = None, maximum: float | None = None, checker: Callable | None = None) Quantity

Calculate a Astropy Quantity from a header card and a unit.

Parameters:
keywordsstr or list of str

Keyword to use from header. If a list each keyword will be tried in turn until one matches.

unitastropy.units.UnitBase

Unit of the item in the header.

defaultfloat, optional

Default value to use if the header value is invalid. Assumed to be in the same units as the value expected in the header. If None, no default value is used.

minimumfloat, optional

Minimum possible valid value, optional. If the calculated value is below this value, the default value will be used.

maximumfloat, optional

Maximum possible valid value, optional. If the calculated value is above this value, the default value will be used.

checkerfunction, optional

Callback function to be used by the translator method in case the keyword is not present. Function will be executed as if it is a method of the translator class. Running without raising an exception will allow the default to be used. Should usually raise KeyError.

Returns:
qastropy.units.Quantity

Quantity representing the header value.

Raises:
KeyError

The supplied header key is not present.

resource_root() Tuple[str | None, str | None]

Package resource to use to locate correction resources within an installed package.

Returns:
resource_packagestr

Package resource name. None if no package resource are to be used.

resource_rootstr

The name of the resource root. None if no package resources are to be used.

search_paths()

Search paths to use for LSST data when looking for header correction files.

Returns:
pathlist

List with a single element containing the full path to the corrections directory within the obs_lsst package.

to_altaz_begin() Any

Telescope boresight azimuth and elevation at start of observation.

Returns:
translation<class 'astropy.coordinates.builtin_frames.altaz.AltAz'>

Translated property.

to_boresight_airmass() Any

Airmass of the boresight of the telescope.

Returns:
translation<class 'float'>

Translated property.

to_boresight_rotation_angle() Any

Angle of the instrument in boresight_rotation_coord frame.

Returns:
translation<class 'astropy.coordinates.angles.Angle'>

Translated property.

to_boresight_rotation_coord() Any

Coordinate frame of the instrument rotation angle (options: sky, unknown).

Returns:
translation<class 'str'>

Translated property.

to_dark_time() Any

Calculate the dark time.

If a DARKTIME header is not found, the value is assumed to be identical to the exposure time.

Returns:
darkastropy.units.Quantity

The dark time in seconds.

to_datetime_begin() Any

Calculate start time of observation.

Uses FITS standard MJD-OBS or DATE-OBS, in conjunction with the TIMESYS header.

Returns:
start_timeastropy.time.Time

Time corresponding to the start of the observation.

to_datetime_end() Any

Calculate end time of observation.

Uses FITS standard MJD-END or DATE-END, in conjunction with the TIMESYS header.

Returns:
start_timeastropy.time.Time

Time corresponding to the end of the observation.

to_detector_exposure_id() Any

Return value of detector_exposure_id from headers.

Unique integer identifier for this detector in this exposure.

Returns:
detector_exposure_idint

The translated property.

to_detector_group() Any

Return value of detector_group from headers.

Collection name of which this detector is a part. Can be None if there are no detector groupings.

Returns:
detector_groupstr

The translated property.

to_detector_name() Any

Name of the detector within the instrument (might not be unique if there are detector groups).

Returns:
translation<class 'str'>

Translated property.

to_detector_num() Any

Return value of detector_num from headers.

Unique (for instrument) integer identifier for the sensor.

Returns:
detector_numint

The translated property.

to_detector_serial() Any

Serial number/string associated with this detector.

Returns:
translationstr

Translated value derived from the header.

to_detector_unique_name() Any

Return a unique name for the detector.

Base class implementation attempts to combine detector_name with detector_group. Group is only used if not None.

Can be over-ridden by specialist translator class.

Returns:
namestr

detector_group``_``detector_name if detector_group is defined, else the detector_name is assumed to be unique. If neither return a valid value an exception is raised.

Raises:
NotImplementedError

Raised if neither detector_name nor detector_group is defined.

to_exposure_group() Any

Calculate the exposure group string.

For LSSTCam and LATISS this is read from the GROUPID header. If that header is missing the exposure_id is returned instead as a string.

to_exposure_id()

Generate a unique exposure ID number

Note that SEQNUM is not unique for a given day in TS3 data so instead we convert the ISO date of observation directly to an integer.

Returns:
exposure_idint

Unique exposure number.

to_exposure_time() Any

Duration of the exposure with shutter open (seconds).

Returns:
translationastropy.units.Quantity

Translated value derived from the header.

to_focus_z() Any

Return the defocal distance of the camera in units of mm. If there is no FOCUSZ value in the header it will return the default 0.0mm value.

Returns:
focus_z: astropy.units.Quantity

The defocal distance from header in mm or the 0.0mm default

to_group_counter_end() Any

Return the observation counter of the observation that ends this group.

The definition of the relevant group is up to the metadata translator. It can be the last observation in the exposure_group or the last observation in the visit, but must be derivable from the metadata of this observation. It is of course possible that the last observation in the group does not exist if a sequence of observations was not completed.

Returns:
counterint

The observation counter for the end of the relevant group. Default implementation always returns the observation counter of this observation.

to_group_counter_start() Any

Return the observation counter of the observation that began this group.

The definition of the relevant group is up to the metadata translator. It can be the first observation in the exposure_group or the first observation in the visit, but must be derivable from the metadata of this observation.

Returns:
counterint

The observation counter for the start of the relevant group. Default implementation always returns the observation counter of this observation.

to_has_simulated_content() Any

Return a boolean indicating whether any part of the observation was simulated.

Returns:
is_simulatedbool

True if this exposure has simulated content. This can be if some parts of the metadata or data were simulated. Default implementation always returns False.

to_instrument() Any

The instrument used to observe the exposure.

Returns:
translation<class 'str'>

Translated property.

to_location() Any

Location of the observatory.

Returns:
translation<class 'astropy.coordinates.earth.EarthLocation'>

Translated property.

to_object() Any

Object of interest or field name.

Returns:
translation<class 'str'>

Translated property.

to_observation_counter() Any

Return the sequence number within the observing day.

Returns:
counterint

The sequence number for this day.

to_observation_id() Any

Return value of observation_id from headers.

Label uniquely identifying this observation (can be related to ‘exposure_id’).

Returns:
observation_idstr

The translated property.

to_observation_reason() Any

Return the reason this observation was taken.

Base class implementation returns the science if the observation_type is science, else unknown. A subclass may do something different.

Returns:
namestr

The reason for this observation.

to_observation_type() Any

Return value of observation_type from headers.

Type of observation (currently: science, dark, flat, bias, focus).

Returns:
observation_typestr

The translated property.

to_observing_day() Any

Return the day of observation as YYYYMMDD integer.

For LSSTCam and other compliant instruments this is the value of the DAYOBS header.

Returns:
obs_dayint

The day of observation.

to_physical_filter() Any

The bandpass filter used for this observation.

Returns:
translationstr

Translated value derived from the header.

to_pressure() Any

Atmospheric pressure outside the dome.

Returns:
translation<class 'astropy.units.quantity.Quantity'>

Translated property.

to_relative_humidity() Any

Relative humidity outside the dome.

Returns:
translation<class 'float'>

Translated property.

to_science_program() Any

Calculate the science program information.

There is no header recording this in TS3 data so instead return the observing day in YYYY-MM-DD format.

Returns:
runstr

Observing day in YYYY-MM-DD format.

to_telescope() Any

Full name of the telescope.

Returns:
translation<class 'str'>

Translated property.

to_temperature() Any

Temperature outside the dome.

Returns:
translation<class 'astropy.units.quantity.Quantity'>

Translated property.

to_tracking_radec() Any

Requested RA/Dec to track.

Returns:
translation<class 'astropy.coordinates.sky_coordinate.SkyCoord'>

Translated property.

to_visit_id()

Generate a unique exposure ID number

Note that SEQNUM is not unique for a given day in TS3 data so instead we convert the ISO date of observation directly to an integer.

Returns:
exposure_idint

Unique exposure number.

classmethod translator_version() str

Return the version string for this translator class.

Returns:
versionstr

String identifying the version of this translator.

Notes

Assumes that the version is available from the __version__ variable in the parent module. If this is not the case a translator should subclass this method.

static validate_value(value: float, default: float, minimum: float | None = None, maximum: float | None = None) float

Validate the supplied value, returning a new value if out of range

Parameters:
valuefloat

Value to be validated.

defaultfloat

Default value to use if supplied value is invalid or out of range. Assumed to be in the same units as the value expected in the header.

minimumfloat

Minimum possible valid value, optional. If the calculated value is below this value, the default value will be used.

maximumfloat

Maximum possible valid value, optional. If the calculated value is above this value, the default value will be used.

Returns:
valuefloat

Either the supplied value, or a default value.