NumStarLabeller¶
- class lsst.pipe.tasks.functors.NumStarLabeller(filt=None, dataset=None, noDup=None)¶
Bases:
Labeller
Attributes Summary
Columns required to perform calculation
Short name of functor (suitable for column name/dict key)
Methods Summary
__call__
(parq[, dropna])Call self as a function.
difference
(data1, data2, **kwargs)Computes difference between functor called on two different ParquetTable objects
fail
(df)multilevelColumns
(data[, columnIndex, ...])Returns columns needed by functor from multilevel dataset
Attributes Documentation
- columns¶
Columns required to perform calculation
- labels = {'maybe': 1, 'notStar': 2, 'star': 0}¶
- name = 'label'¶
- noDup¶
- shortname¶
Short name of functor (suitable for column name/dict key)
Methods Documentation
- __call__(parq, dropna=False, **kwargs)¶
Call self as a function.
- difference(data1, data2, **kwargs)¶
Computes difference between functor called on two different ParquetTable objects
- fail(df)¶
- multilevelColumns(data, columnIndex=None, returnTuple=False)¶
Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
MultilevelParquetTable
orDeferredDatasetHandle
need to be passed either a list of tuples or a dictionary.- Parameters:
- data
MultilevelParquetTable
orDeferredDatasetHandle
- columnIndex (optional): pandas `Index` object
either passed or read in from
DeferredDatasetHandle
.- `returnTuple`bool
If true, then return a list of tuples rather than the column dictionary specification. This is set to
True
byCompositeFunctor
in order to be able to combine columns from the various component functors.
- data