TransformCatalogBaseTask¶
- class lsst.pipe.tasks.postprocess.TransformCatalogBaseTask(*args, **kwargs)¶
Bases:
PipelineTask
Base class for transforming/standardizing a catalog
by applying functors that convert units and apply calibrations. The purpose of this task is to perform a set of computations on an input
ParquetTable
dataset (such asdeepCoadd_obj
) and write the results to a new dataset (which needs to be declared in anoutputDataset
attribute).The calculations to be performed are defined in a YAML file that specifies a set of functors to be computed, provided as a
--functorFile
config parameter. An example of such a YAML file is the following:- funcs:
- psfMag:
functor: Mag args:
base_PsfFlux
filt: HSC-G dataset: meas
- cmodel_magDiff:
functor: MagDiff args:
modelfit_CModel
base_PsfFlux
filt: HSC-G
- gauss_magDiff:
functor: MagDiff args:
base_GaussianFlux
base_PsfFlux
filt: HSC-G
- count:
functor: Column args:
base_InputCount_value
filt: HSC-G
- deconvolved_moments:
functor: DeconvolvedMoments filt: HSC-G dataset: forced_src
- refFlags:
calib_psfUsed
merge_measurement_i
merge_measurement_r
merge_measurement_z
merge_measurement_y
merge_measurement_g
base_PixelFlags_flag_inexact_psfCenter
detect_isPrimary
The names for each entry under “func” will become the names of columns in the output dataset. All the functors referenced are defined in
lsst.pipe.tasks.functors
. Positional arguments to be passed to each functor are in theargs
list, and any additional entries for each column other than “functor” or “args” (e.g.,'filt'
,'dataset'
) are treated as keyword arguments to be passed to the functor initialization.The “flags” entry is the default shortcut for
Column
functors. All columns listed under “flags” will be copied to the output table untransformed. They can be of any datatype. In the special case of transforming a multi-level oject table with band and dataset indices (deepCoadd_obj), these will be taked from themeas
dataset and exploded out per band.There are two special shortcuts that only apply when transforming multi-level Object (deepCoadd_obj) tables:
The “refFlags” entry is shortcut for
Column
functor taken from the'ref'
dataset if transforming an ObjectTable.The “forcedFlags” entry is shortcut for
Column
functors. taken from theforced_src
dataset if transforming an ObjectTable. These are expanded out per band.
This task uses the
lsst.pipe.tasks.postprocess.PostprocessAnalysis
object to organize and excecute the calculations.Attributes Summary
Methods Summary
Empty (clear) the metadata for this Task and all sub-Tasks.
getAnalysis
(parq[, funcs, band])Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName
()Get the name of the task.
Return resource configuration for this task.
Get a dictionary of all tasks as a shallow copy.
makeField
(doc)Make a
lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the
name
attribute of this task.run
(parq[, funcs, dataId, band])Do postprocessing calculations
runQuantum
(butlerQC, inputRefs, outputRefs)Method to do butler IO and or transforms to provide in memory objects for tasks run method
timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
transform
(band, parq, funcs, dataId)Attributes Documentation
- ConfigClass: ClassVar[Type[PipelineTaskConfig]]¶
- inputDataset¶
- outputDataset¶
Methods Documentation
- getAnalysis(parq, funcs=None, band=None)¶
- getFullMetadata() TaskMetadata ¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str ¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getFunctors()¶
- getResourceConfig() ResourceConfig | None ¶
Return resource configuration for this task.
- Returns:
- Object of type
ResourceConfig
orNone
if resource - configuration is not defined for this task.
- Object of type
- getTaskDict() Dict[str, ReferenceType[Task]] ¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField ¶
Make a
lsst.pex.config.ConfigurableField
for this task.- Parameters:
- doc
str
Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None ¶
Create a subtask as a new instance as the
name
attribute of this task.- Parameters:
- name
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
“config”.
“parentTask”.
- name
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.
- run(parq, funcs=None, dataId=None, band=None)¶
Do postprocessing calculations
Takes a
ParquetTable
object and dataId, returns a dataframe with results of postprocessing calculations.- Parameters:
- parq
lsst.pipe.tasks.parquetTable.ParquetTable
ParquetTable from which calculations are done.
- funcs
lsst.pipe.tasks.functors.Functors
Functors to apply to the table’s columns
- dataIddict, optional
Used to add a
patchId
column to the output dataframe.- band
str
, optional Filter band that is being processed.
- Returns
- ——
- df
pandas.DataFrame
- parq
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Method to do butler IO and or transforms to provide in memory objects for tasks run method
- Parameters:
- butlerQC
ButlerQuantumContext
A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum
.- inputRefs
InputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined output connections.
- butlerQC
- timer(name: str, logLevel: int = 10) Iterator[None] ¶
Context manager to log performance data for an arbitrary block of code.
- Parameters:
See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- transform(band, parq, funcs, dataId)¶