CpFlatNormalizationTask¶
CpFlatNormalizationTask determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask runs these operations:
Combine the set of background measurements for all input exposures for all detectors into a matrix
B[exposure, detector].Iteratively solve for two vectors
E[exposure]andG[detector]whose Cartesian product are the best fit toB[exposure, detector].
Python API summary¶
from lsst.cp.pipe.cpFlatNormTask import CpFlatNormalizationTask
-
class
CpFlatNormalizationTask(*, config=None, log=None, initInputs=None, **kwargs) Rescale merged flat frames to remove unequal screen illumination
...
- attributeconfig
Access configuration fields and retargetable subtasks.
See also
See the CpFlatNormalizationTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
lsst.pipe.base.config.CpFlatNormalizationTaskConfigConnections- Field type
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
'DETECTOR'- Field type
strChoiceField(optional)- Choices
'DETECTOR'Correct using full detector statistics.
'AMP'Correct using individual amplifiers.
NoneField is optional
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
saveMetadata¶
Flag to enable/disable metadata saving for a task, enabled by default.
scaleMaxIter¶
Max number of iterations to use in scale solver.