CpFlatNormalizationTask¶
CpFlatNormalizationTask determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask runs these operations:
- Combine the set of background measurements for all input exposures for all detectors into a matrix - B[exposure, detector].
- Iteratively solve for two vectors - E[exposure]and- G[detector]whose Cartesian product are the best fit to- B[exposure, detector].
Python API summary¶
from lsst.cp.pipe.cpFlatNormTask import CpFlatNormalizationTask
- 
classCpFlatNormalizationTask(*, config=None, log=None, initInputs=None, **kwargs)
- Rescale merged flat frames to remove unequal screen illumination - ...
- attributeconfig
- Access configuration fields and retargetable subtasks. 
See also
See the CpFlatNormalizationTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
- lsst.pipe.base.config.CpFlatNormalizationTaskConfigConnections
- Field type
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
- 'DETECTOR'
- Field type
- str- ChoiceField(optional)
- Choices
- 'DETECTOR'
- Correct using full detector statistics. 
- 'AMP'
- Correct using individual amplifiers. 
- None
- Field is optional 
 
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
saveMetadata¶
Flag to enable/disable metadata saving for a task, enabled by default.
scaleMaxIter¶
Max number of iterations to use in scale solver.