SimpleModel¶
- class lsst.cp.pipe.SimpleModel¶
- Bases: - OverscanModel- Simple analytic overscan model. - Methods Summary - difference(params, signal, data, error, ...)- Calculate the flattened difference array between model and data. - loglikelihood(params, signal, data, error, ...)- Calculate log likelihood of the model. - model_results(params, signal, num_transfers)- Generate a realization of the overscan model, using the specified fit parameters and input signal. - negative_loglikelihood(params, signal, data, ...)- Calculate negative log likelihood of the model. - rms_error(params, signal, data, error, ...)- Calculate RMS error between model and data. - Methods Documentation - difference(params, signal, data, error, *args, **kwargs)¶
- Calculate the flattened difference array between model and data. - Parameters:
- paramslmfit.Parameters
- Object containing the model parameters. 
- signalnp.ndarray, (nMeasurements)
- Array of image means. 
- datanp.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- errorfloat
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 
- params
- Returns:
- differencenp.ndarray, (nMeasurements*nCols)
- The rms error between the model and input data. 
 
- difference
 
 - loglikelihood(params, signal, data, error, *args, **kwargs)¶
- Calculate log likelihood of the model. - Parameters:
- paramslmfit.Parameters
- Object containing the model parameters. 
- signalnp.ndarray, (nMeasurements)
- Array of image means. 
- datanp.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- errorfloat
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 
- params
- Returns:
- logLfloat
- The log-likelihood of the observed data given the model parameters. 
 
- logL
 
 - static model_results(params, signal, num_transfers, start=1, stop=10)¶
- Generate a realization of the overscan model, using the specified fit parameters and input signal. - Parameters:
- paramslmfit.Parameters
- Object containing the model parameters. 
- signalnp.ndarray, (nMeasurements)
- Array of image means. 
- num_transfersint
- Number of serial transfers that the charge undergoes. 
- startint, optional
- First overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box. 
- stopint, optional
- Last overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box. 
 
- params
- Returns:
- resnp.ndarray, (nMeasurements, nCols)
- Model results. 
 
- res
 
 - negative_loglikelihood(params, signal, data, error, *args, **kwargs)¶
- Calculate negative log likelihood of the model. - Parameters:
- paramslmfit.Parameters
- Object containing the model parameters. 
- signalnp.ndarray, (nMeasurements)
- Array of image means. 
- datanp.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- errorfloat
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 
- params
- Returns:
- negativelogLfloat
- The negative log-likelihood of the observed data given the model parameters. 
 
- negativelogL
 
 - rms_error(params, signal, data, error, *args, **kwargs)¶
- Calculate RMS error between model and data. - Parameters:
- paramslmfit.Parameters
- Object containing the model parameters. 
- signalnp.ndarray, (nMeasurements)
- Array of image means. 
- datanp.ndarray, (nMeasurements, nCols)
- Array of overscan column means from each measurement. 
- errorfloat
- Fixed error value. 
- *args
- Additional position arguments. 
- **kwargs
- Additional keyword arguments. 
 
- params
- Returns:
- rmsfloat
- The rms error between the model and input data. 
 
- rms