LocalDipoleDiffFlux¶
- class lsst.pipe.tasks.functors.LocalDipoleDiffFlux(instFluxPosCol, instFluxNegCol, instFluxPosErrCol, instFluxNegErrCol, photoCalibCol, photoCalibErrCol, **kwargs)¶
 Bases:
LocalDipoleMeanFluxCompute the absolute difference of dipole fluxes.
Value is (abs(pos) - abs(neg))
See also
Attributes Summary
Columns required to perform calculation
Full name of functor (suitable for figure labels)
Short name of functor (suitable for column name/dict key)
Methods Summary
__call__(data[, dropna])Call self as a function.
difference(data1, data2, **kwargs)Computes difference between functor called on two different DataFrame/Handle objects
fail(df)instFluxErrToMagnitudeErr(instFlux, ...)Convert instrument flux err to nanojanskys.
instFluxErrToNanojanskyErr(instFlux, ...)Convert instrument flux to nanojanskys.
instFluxToMagnitude(instFlux, localCalib)Convert instrument flux to nanojanskys.
instFluxToNanojansky(instFlux, localCalib)Convert instrument flux to nanojanskys.
multilevelColumns(data[, columnIndex, ...])Returns columns needed by functor from multilevel dataset
Attributes Documentation
- columns¶
 
- logNJanskyToAB = 31.4¶
 
- name¶
 
- noDup¶
 
- shortname¶
 Short name of functor (suitable for column name/dict key)
Methods Documentation
- __call__(data, dropna=False)¶
 Call self as a function.
- difference(data1, data2, **kwargs)¶
 Computes difference between functor called on two different DataFrame/Handle objects
- fail(df)¶
 
- instFluxErrToMagnitudeErr(instFlux, instFluxErr, localCalib, localCalibErr)¶
 Convert instrument flux err to nanojanskys.
- Parameters:
 - instFlux
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- instFluxErr
numpy.ndarrayorpandas.Series Errors on associated
instFluxvalues- localCalib
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- localCalibErr
numpy.ndarrayorpandas.Series Errors on associated
localCalibvalues
- instFlux
 - Returns:
 - calibMagErr: 
numpy.ndarrayorpandas.Series Error on calibrated AB magnitudes.
- calibMagErr: 
 
- instFluxErrToNanojanskyErr(instFlux, instFluxErr, localCalib, localCalibErr)¶
 Convert instrument flux to nanojanskys.
- Parameters:
 - instFlux
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- instFluxErr
numpy.ndarrayorpandas.Series Errors on associated
instFluxvalues- localCalib
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- localCalibErr
numpy.ndarrayorpandas.Series Errors on associated
localCalibvalues
- instFlux
 - Returns:
 - calibFluxErr
numpy.ndarrayorpandas.Series Errors on calibrated flux measurements.
- calibFluxErr
 
- instFluxToMagnitude(instFlux, localCalib)¶
 Convert instrument flux to nanojanskys.
- Parameters:
 - instFlux
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- localCalib
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- instFlux
 - Returns:
 - calibMag
numpy.ndarrayorpandas.Series Array of calibrated AB magnitudes.
- calibMag
 
- instFluxToNanojansky(instFlux, localCalib)¶
 Convert instrument flux to nanojanskys.
- Parameters:
 - instFlux
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- localCalib
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- instFlux
 - Returns:
 - calibFlux
numpy.ndarrayorpandas.Series Array of calibrated flux measurements.
- calibFlux
 
- multilevelColumns(data, columnIndex=None, returnTuple=False)¶
 Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
DeferredDatasetHandleorInMemoryDatasetHandleneed to be passed either a list of tuples or a dictionary.- Parameters:
 - datavarious
 The data as either
DeferredDatasetHandle, orInMemoryDatasetHandle.- columnIndex (optional): pandas `Index` object
 either passed or read in from
DeferredDatasetHandle.- `returnTuple`
bool If true, then return a list of tuples rather than the column dictionary specification. This is set to
TruebyCompositeFunctorin order to be able to combine columns from the various component functors.