CpFlatNormalizationTask¶
- class lsst.cp.pipe.cpFlatNormTask.CpFlatNormalizationTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
- Bases: - PipelineTask- Rescale merged flat frames to remove unequal screen illumination. - Attributes Summary - Methods Summary - Empty (clear) the metadata for this Task and all sub-Tasks. - Get metadata for all tasks. - Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- measureScales(bgMatrix[, bgCounts, iterations])- Convert backgrounds to exposure and detector components. - run(inputMDs, inputDims, camera)- Normalize FLAT exposures to a consistent level. - runQuantum(butlerQC, inputRefs, outputRefs)- Do butler IO and transform to provide in memory objects for tasks - runmethod.- timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - Methods Documentation - getFullMetadata() TaskMetadata¶
- Get metadata for all tasks. - Returns:
- metadataTaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 
- metadata
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
 - getFullName() str¶
- Get the task name as a hierarchical name including parent task names. - Returns:
- fullNamestr
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”. 
- The full name of subtask “sub” of top-level task “top” is “top.sub”. 
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”. 
 
 
- fullName
 
 - getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns:
- taskDictdict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict
 
 - classmethod makeField(doc: str) ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- docstr
- Help text for the field. 
 
- doc
- Returns:
- configurableFieldlsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 
- configurableField
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
 - makeSubtask(name: str, **keyArgs: Any) None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters:
- namestr
- Brief name of the subtask. 
- **keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - config.
- parentTask.
 
 
- name
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
 - measureScales(bgMatrix, bgCounts=None, iterations=10)¶
- Convert backgrounds to exposure and detector components. - Parameters:
- bgMatrixnp.ndarray, (nDetectors, nExposures)
- Input backgrounds indexed by exposure (axis=0) and detector (axis=1). 
- bgCountsnp.ndarray, (nDetectors, nExposures), optional
- Input pixel counts used to in measuring bgMatrix, indexed identically. 
- iterationsint, optional
- Number of iterations to use in decomposition. 
 
- bgMatrix
- Returns:
- scaleResultlsst.pipe.base.Struct
- Result struct containing fields: - vectorE
- Output E vector of exposure level scalings ( - np.array, (nExposures)).
- vectorG
- Output G vector of detector level scalings ( - np.array, (nExposures)).
- bgModel
- Expected model bgMatrix values, calculated from E and G ( - np.ndarray, (nDetectors, nExposures)).
 
 
- scaleResult
 - Notes - The set of background measurements B[exposure, detector] of flat frame data should be defined by a “Cartesian” product of two vectors, E[exposure] and G[detector]. The E vector represents the total flux incident on the focal plane. In a perfect camera, this is simply the sum along the columns of B (np.sum(B, axis=0)). - However, this simple model ignores differences in detector gains, the vignetting of the detectors, and the illumination pattern of the source lamp. The G vector describes these detector dependent differences, which should be identical over different exposures. For a perfect lamp of unit total intensity, this is simply the sum along the rows of B (np.sum(B, axis=1)). This algorithm divides G by the total flux level, to provide the relative (not absolute) scales between detectors. - The algorithm here, from pipe_drivers/constructCalibs.py and from there from Eugene Magnier/PanSTARRS [1], attempts to iteratively solve this decomposition from initial “perfect” E and G vectors. The operation is performed in log space to reduce the multiply and divides to linear additions and subtractions. - References 
 - run(inputMDs, inputDims, camera)¶
- Normalize FLAT exposures to a consistent level. - Parameters:
- Returns:
- Raises:
- KeyError
- Raised if the input dimensions do not contain detector and exposure, or if the metadata does not contain the expected statistic entry. 
 
 
 - runQuantum(butlerQC, inputRefs, outputRefs)¶
- Do butler IO and transform to provide in memory objects for tasks - runmethod.- Parameters:
- butlerQCQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- inputRefsInputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.
- outputRefsOutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC