SerializedQuantum¶
- class lsst.daf.butler.SerializedQuantum(*, taskName: str | None = None, dataId: SerializedDataCoordinate | None = None, datasetTypeMapping: Mapping[str, SerializedDatasetType], initInputs: Mapping[str, tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]], inputs: Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], outputs: Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], dimensionRecords: dict[int, lsst.daf.butler.dimensions._records.SerializedDimensionRecord] | None = None, datastoreRecords: dict[str, lsst.daf.butler.datastore.record_data.SerializedDatastoreRecordData] | None = None)¶
Bases:
_BaseModelCompatSimplified model of a
Quantumsuitable for serialization.Attributes Summary
Methods Summary
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
direct(*, taskName, dataId, ...)Construct a
SerializedQuantumdirectly without validators.from_orm(obj)json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model,
includeandexcludearguments as perdict().model_construct([_fields_set])model_copy(*[, update, deep])model_dump(*[, mode, include, exclude, ...])model_dump_json(*[, indent, include, ...])model_rebuild(*[, force, raise_errors, ...])model_validate(obj, *[, strict, ...])model_validate_json(json_data, *[, strict, ...])parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value)Attributes Documentation
- model_fields = {'dataId': ModelField(name='dataId', type=Optional[SerializedDataCoordinate], required=False, default=None), 'datasetTypeMapping': ModelField(name='datasetTypeMapping', type=Mapping[str, SerializedDatasetType], required=True), 'datastoreRecords': ModelField(name='datastoreRecords', type=Optional[Mapping[str, SerializedDatastoreRecordData]], required=False, default=None), 'dimensionRecords': ModelField(name='dimensionRecords', type=Optional[Mapping[int, SerializedDimensionRecord]], required=False, default=None), 'initInputs': ModelField(name='initInputs', type=Mapping[str, tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]], required=True), 'inputs': ModelField(name='inputs', type=Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], required=True), 'outputs': ModelField(name='outputs', type=Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], required=True), 'taskName': ModelField(name='taskName', type=Optional[str], required=False, default=None)}¶
Methods Documentation
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to
Trueto make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod direct(*, taskName: str | None, dataId: dict | None, datasetTypeMapping: Mapping[str, dict], initInputs: Mapping[str, tuple[dict, list[int]]], inputs: Mapping[str, list[tuple[dict, list[int]]]], outputs: Mapping[str, list[tuple[dict, list[int]]]], dimensionRecords: dict[int, dict] | None, datastoreRecords: dict[str, dict] | None) SerializedQuantum¶
Construct a
SerializedQuantumdirectly without validators.- Parameters:
- taskName
strorNone The name of the task.
- dataId
dictorNone The dataId of the quantum.
- datasetTypeMapping
Mapping[str,dict] Dataset type definitions.
- initInputs
Mapping The quantum init inputs.
- inputs
Mapping The quantum inputs.
- outputs
Mapping The quantum outputs.
- dimensionRecords
dict[int,dict] orNone The dimension records.
- datastoreRecords
dict[str,dict] orNone The datastore records.
- taskName
- Returns:
- quantum
SerializedQuantum Serializable model of the quantum.
- quantum
Notes
This differs from the pydantic “construct” method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding
directmethods.This method should only be called when the inputs are trusted.
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode¶
Generate a JSON representation of the model,
includeandexcludearguments as perdict().encoderis an optional function to supply asdefaultto json.dumps(), other arguments as perjson.dumps().
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | dict[int, Any] | dict[str, Any] | None = None, exclude: set[int] | set[str] | dict[int, Any] | dict[str, Any] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]¶
- model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | dict[int, Any] | dict[str, Any] | None = None, exclude: set[int] | set[str] | dict[int, Any] | dict[str, Any] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str¶
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None¶
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Self¶
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Self¶
- classmethod parse_file(path: str | Path, *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
- classmethod parse_raw(b: str | bytes, *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode¶