CollectionSearch¶
- class lsst.daf.butler.registry.CollectionSearch(root: RootModelRootType = PydanticUndefined)¶
Bases:
_CollectionSearchAn ordered search path of collections.
The
fromExpressionmethod should almost always be used to construct instances, as the regular constructor performs no checking of inputs (and that can lead to confusing error messages downstream).Notes
A
CollectionSearchis used to find a single dataset (or set of datasets with different dataset types or data IDs) according to its dataset type and data ID, giving preference to collections in the order in which they are specified. ACollectionWildcardcan be constructed from a broader range of expressions but does not order the collections to be searched.CollectionSearchis an immutable sequence ofstrcollection names.A
CollectionSearchinstance constructed properly (e.g. viafromExpression) is a unique representation of a particular search path; it is exactly the same internally and compares as equal to anyCollectionSearchconstructed from an equivalent expression, regardless of how different the original expressions appear.Deprecated since version v25.0: Tuples of string collection names are now preferred. Will be removed after v26.
Attributes Summary
Get the computed fields of this model instance.
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Get extra fields set during validation.
Metadata about the fields defined on the model, mapping of field names to [
FieldInfo][pydantic.fields.FieldInfo].Returns the set of fields that have been explicitly set on this model instance.
Methods Summary
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])Iterate over collection names that were specified explicitly.
fromExpression(expression)Process a general expression to construct a
CollectionSearchinstance.from_orm(obj)json(*[, include, exclude, by_alias, ...])model_construct(root[, _fields_set])Create a new model using the provided root object and update fields set.
model_copy(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
model_dump(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
model_dump_json(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(_BaseModel__context)Override this method to perform additional initialization after
__init__andmodel_construct.model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
model_validate_strings(obj, *[, strict, context])Validate the given object contains string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes Documentation
- model_computed_fields¶
Get the computed fields of this model instance.
- Returns:
A dictionary of computed field names and their corresponding
ComputedFieldInfoobjects.
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- model_extra¶
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'root': FieldInfo(annotation=tuple[str, ...], required=True)}¶
Metadata about the fields defined on the model, mapping of field names to [
FieldInfo][pydantic.fields.FieldInfo].This replaces
Model.__fields__from Pydantic V1.
- model_fields_set¶
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
Methods Documentation
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model¶
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
- include: Optional set or mapping
specifying which fields to include in the copied model.
- exclude: Optional set or mapping
specifying which fields to exclude in the copied model.
- update: Optional dictionary of field-value pairs to override field values
in the copied model.
deep: If True, the values of fields that are Pydantic models will be deep copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]¶
- classmethod fromExpression(expression: Any) CollectionSearch¶
Process a general expression to construct a
CollectionSearchinstance.- Parameters:
- expression
Any May be:
a
strcollection name;an iterable of
strcollection names;another
CollectionSearchinstance (passed through unchanged).
Duplicate entries will be removed (preserving the first appearance of each collection name).
- expression
- Returns:
- collections
CollectionSearch A
CollectionSearchinstance.
- collections
- classmethod from_orm(obj: Any) Model¶
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str¶
- classmethod model_construct(root: RootModelRootType, _fields_set: set[str] | None = None) Model¶
Create a new model using the provided root object and update fields set.
- Args:
root: The root object of the model. _fields_set: The set of fields to be updated.
- Returns:
The new model.
- Raises:
NotImplemented: If the model is not a subclass of
RootModel.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model¶
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to
Trueto make a deep copy of the model.- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]¶
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which
to_pythonshould run. If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value from the output. exclude_none: Whether to exclude fields that have a value of
Nonefrom the output. round_trip: Whether to enable serialization and deserialization round-trip support. warnings: Whether to log warnings when invalid fields are encountered.- mode: The mode in which
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str¶
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of
None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]¶
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchemawith your desired modificationsmode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str¶
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Modelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None¶
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None¶
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to
False. raise_errors: Whether to raise errors, defaults toTrue. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults toNone.- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model¶
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If
json_datais not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
- classmethod parse_obj(obj: Any) Model¶
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str¶
- classmethod validate(value: Any) Model¶