MockDatasetQuantum¶
- class lsst.pipe.base.tests.mocks.MockDatasetQuantum(*, task_label: str, data_id: dict[str, int | str | None], inputs: dict[str, list[lsst.pipe.base.tests.mocks._storage_class.MockDataset]])¶
- Bases: - BaseModel- Description of the quantum that produced a mock dataset. - This is also used to represent task-init operations for init-output mock datasets. - Attributes Summary - Get the computed fields of this model instance. - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Get extra fields set during validation. - Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- Returns the set of fields that have been explicitly set on this model instance. - Methods Summary - construct([_fields_set])- copy(*args, **kwargs)- See - pydantic.BaseModel.copy.- dict(*[, include, exclude, by_alias, ...])- from_orm(obj)- json(*[, include, exclude, by_alias, ...])- model_construct([_fields_set])- Creates a new instance of the - Modelclass with validated data.- model_copy(*args, **kwargs)- See - pydantic.BaseModel.model_copy.- model_dump(*args, **kwargs)- See - pydantic.BaseModel.model_dump.- model_dump_json(*[, indent, include, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - model_json_schema(*args, **kwargs)- See - pydantic.BaseModel.model_json_schema.- model_parametrized_name(params)- Compute the class name for parametrizations of generic classes. - model_post_init(_BaseModel__context)- Override this method to perform additional initialization after - __init__and- model_construct.- model_rebuild(*[, force, raise_errors, ...])- Try to rebuild the pydantic-core schema for the model. - model_validate(obj, *[, strict, ...])- Validate a pydantic model instance. - model_validate_json(json_data, *[, strict, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - model_validate_strings(obj, *[, strict, context])- Validate the given object contains string data against the Pydantic model. - parse_file(path, *[, content_type, ...])- parse_obj(obj)- parse_raw(b, *[, content_type, encoding, ...])- schema([by_alias, ref_template])- schema_json(*[, by_alias, ref_template])- update_forward_refs(**localns)- validate(value)- Attributes Documentation - model_computed_fields¶
- Get the computed fields of this model instance. - Returns:
- A dictionary of computed field names and their corresponding - ComputedFieldInfoobjects.
 
 - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - model_extra¶
- Get extra fields set during validation. - Returns:
- A dictionary of extra fields, or - Noneif- config.extrais not set to- "allow".
 
 - model_fields: ClassVar[dict[str, FieldInfo]] = {'data_id': FieldInfo(annotation=dict[str, Union[int, str, NoneType]], required=True), 'inputs': FieldInfo(annotation=dict[str, list[MockDataset]], required=True), 'task_label': FieldInfo(annotation=str, required=True)}¶
- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- This replaces - Model.__fields__from Pydantic V1.
 - model_fields_set¶
- Returns the set of fields that have been explicitly set on this model instance. - Returns:
- A set of strings representing the fields that have been set,
- i.e. that were not filled from defaults. 
 
 
 - Methods Documentation - dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]¶
 - classmethod from_orm(obj: Any) Model¶
 - json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str¶
 - classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model¶
- Creates a new instance of the - Modelclass with validated data.- Creates a new model setting - __dict__and- __pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if- Config.extra = 'allow'was set since it adds all passed values- Args:
- _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary. 
- Returns:
- A new instance of the - Modelclass with validated data.
 
 - model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - Generates a JSON representation of the model using Pydantic’s - to_jsonmethod.- Args:
- indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of - None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.
- Returns:
- A JSON string representation of the model. 
 
 - classmethod model_json_schema(*args: Any, **kwargs: Any) Any¶
- See - pydantic.BaseModel.model_json_schema.
 - classmethod model_parametrized_name(params: tuple[type[Any], ...]) str¶
- Compute the class name for parametrizations of generic classes. - This method can be overridden to achieve a custom naming scheme for generic BaseModels. - Args:
- params: Tuple of types of the class. Given a generic class
- Modelwith 2 type variables and a concrete model- Model[str, int], the value- (str, int)would be passed to- params.
 
- Returns:
- String representing the new class where - paramsare passed to- clsas type variables.
- Raises:
- TypeError: Raised when trying to generate concrete names for non-generic models. 
 
 - model_post_init(_BaseModel__context: Any) None¶
- Override this method to perform additional initialization after - __init__and- model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
 - classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None¶
- Try to rebuild the pydantic-core schema for the model. - This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. - Args:
- force: Whether to force the rebuilding of the model schema, defaults to - False. raise_errors: Whether to raise errors, defaults to- True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to- None.
- Returns:
- Returns - Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns- Trueif rebuilding was successful, otherwise- False.
 
 - classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate a pydantic model instance. - Args:
- obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. 
- Raises:
- ValidationError: If the object could not be validated. 
- Returns:
- The validated model instance. 
 
 - classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - Validate the given JSON data against the Pydantic model. - Args:
- json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
- Raises:
- ValueError: If - json_datais not a JSON string.
 
 - classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate the given object contains string data against the Pydantic model. - Args:
- obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
 
 - classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
 - classmethod parse_obj(obj: Any) Model¶
 - classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
 - classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str¶
 - classmethod validate(value: Any) Model¶