QuantumProvenanceData¶
- class lsst.daf.butler.QuantumProvenanceData(*, predicted_inputs: set[uuid.UUID], available_inputs: set[uuid.UUID], actual_inputs: set[uuid.UUID], predicted_outputs: set[uuid.UUID], actual_outputs: set[uuid.UUID], datastore_records: dict[str, lsst.daf.butler.datastore.record_data.SerializedDatastoreRecordData])¶
- Bases: - BaseModel- A serializable struct for per-quantum provenance information and datastore records. - Notes - This class slightly duplicates information from the - Quantumclass itself (the- predicted_inputsand- predicted_outputssets should have the same IDs present in- Quantum.inputsand- Quantum.outputs), but overall it assumes the original- Quantumis also available to reconstruct the complete provenance (e.g. by associating dataset IDs with data IDs, dataset types, and- RUNnames.- Note that - pydanticmethod- parse_raw()is not going to work correctly for this class, use- directmethod instead.- Attributes Summary - Get the computed fields of this model instance. - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Get extra fields set during validation. - Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- Returns the set of fields that have been explicitly set on this model instance. - Methods Summary - collect_and_transfer(butler, quanta, provenance)- Transfer output datasets from multiple quanta to a more permanent - Butlerrepository.- construct([_fields_set])- copy(*[, include, exclude, update, deep])- Returns a copy of the model. - dict(*[, include, exclude, by_alias, ...])- direct(*, predicted_inputs, ...)- Construct an instance directly without validators. - from_orm(obj)- json(*[, include, exclude, by_alias, ...])- model_construct([_fields_set])- Creates a new instance of the - Modelclass with validated data.- model_copy(*[, update, deep])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy - model_dump(*[, mode, include, exclude, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump - model_dump_json(*[, indent, include, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - model_json_schema([by_alias, ref_template, ...])- Generates a JSON schema for a model class. - model_parametrized_name(params)- Compute the class name for parametrizations of generic classes. - model_post_init(_BaseModel__context)- Override this method to perform additional initialization after - __init__and- model_construct.- model_rebuild(*[, force, raise_errors, ...])- Try to rebuild the pydantic-core schema for the model. - model_validate(obj, *[, strict, ...])- Validate a pydantic model instance. - model_validate_json(json_data, *[, strict, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - model_validate_strings(obj, *[, strict, context])- Validate the given object contains string data against the Pydantic model. - parse_file(path, *[, content_type, ...])- parse_obj(obj)- parse_raw(*args, **kwargs)- schema([by_alias, ref_template])- schema_json(*[, by_alias, ref_template])- update_forward_refs(**localns)- validate(value)- Attributes Documentation - model_computed_fields¶
- Get the computed fields of this model instance. - Returns:
- A dictionary of computed field names and their corresponding - ComputedFieldInfoobjects.
 
 - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - model_extra¶
- Get extra fields set during validation. - Returns:
- A dictionary of extra fields, or - Noneif- config.extrais not set to- "allow".
 
 - model_fields: ClassVar[dict[str, FieldInfo]] = {'actual_inputs': FieldInfo(annotation=set[UUID], required=True), 'actual_outputs': FieldInfo(annotation=set[UUID], required=True), 'available_inputs': FieldInfo(annotation=set[UUID], required=True), 'datastore_records': FieldInfo(annotation=dict[str, SerializedDatastoreRecordData], required=True), 'predicted_inputs': FieldInfo(annotation=set[UUID], required=True), 'predicted_outputs': FieldInfo(annotation=set[UUID], required=True)}¶
- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- This replaces - Model.__fields__from Pydantic V1.
 - model_fields_set¶
- Returns the set of fields that have been explicitly set on this model instance. - Returns:
- A set of strings representing the fields that have been set,
- i.e. that were not filled from defaults. 
 
 
 - Methods Documentation - static collect_and_transfer(butler: Butler, quanta: Iterable[Quantum], provenance: Iterable[QuantumProvenanceData]) None¶
- Transfer output datasets from multiple quanta to a more permanent - Butlerrepository.- Parameters:
- butlerButler
- Full butler representing the data repository to transfer datasets to. 
- quantaIterable[Quantum]
- Iterable of - Quantumobjects that carry information about predicted outputs. May be a single-pass iterator.
- provenanceIterable[QuantumProvenanceData]
- Provenance and datastore data for each of the given quanta, in the same order. May be a single-pass iterator. 
 
- butler
 - Notes - Input-output provenance data is not actually transferred yet, because - Registryhas no place to store it.- This method probably works most efficiently if run on all quanta for a single task label at once, because this will gather all datasets of a particular type together into a single vectorized - Registryimport. It should still behave correctly if run on smaller groups of quanta or even quanta from multiple tasks.- Currently this method transfers datastore record data unchanged, with no possibility of actually moving (e.g.) files. Datastores that are present only in execution or only in the more permanent butler are ignored. 
 - copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model¶
- Returns a copy of the model. - !!! warning “Deprecated”
- This method is now deprecated; use - model_copyinstead.
 - If you need - includeor- exclude, use:- `py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
- include: Optional set or mapping
- specifying which fields to include in the copied model. 
- exclude: Optional set or mapping
- specifying which fields to exclude in the copied model. 
- update: Optional dictionary of field-value pairs to override field values
- in the copied model. 
 - deep: If True, the values of fields that are Pydantic models will be deep copied. 
- Returns:
- A copy of the model with included, excluded and updated fields as specified. 
 
 - dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]¶
 - classmethod direct(*, predicted_inputs: Iterable[str | UUID], available_inputs: Iterable[str | UUID], actual_inputs: Iterable[str | UUID], predicted_outputs: Iterable[str | UUID], actual_outputs: Iterable[str | UUID], datastore_records: Mapping[str, Mapping]) QuantumProvenanceData¶
- Construct an instance directly without validators. - Parameters:
- predicted_inputsIterableofstroruuid.UUID
- The predicted inputs. 
- available_inputsIterableofstroruuid.UUID
- The available inputs. 
- actual_inputsIterableofstroruuid.UUID
- The actual inputs. 
- predicted_outputsIterableofstroruuid.UUID
- The predicted outputs. 
- actual_outputsIterableofstroruuid.UUID
- The actual outputs. 
- datastore_recordsMapping[str,Mapping]
- The datastore records. 
 
- predicted_inputs
- Returns:
- provenanceQuantumProvenanceData
- Serializable model of the quantum provenance. 
 
- provenance
 - Notes - This differs from the Pydantic “construct” method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding - directmethods.- This method should only be called when the inputs are trusted. 
 - classmethod from_orm(obj: Any) Model¶
 - json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str¶
 - classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model¶
- Creates a new instance of the - Modelclass with validated data.- Creates a new model setting - __dict__and- __pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if- Config.extra = 'allow'was set since it adds all passed values- Args:
- _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary. 
- Returns:
- A new instance of the - Modelclass with validated data.
 
 - model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy - Returns a copy of the model. - Args:
- update: Values to change/add in the new model. Note: the data is not validated
- before creating the new model. You should trust this data. 
 - deep: Set to - Trueto make a deep copy of the model.
- Returns:
- New model instance. 
 
 - model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump - Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Args:
- mode: The mode in which to_pythonshould run.
- If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects. 
 - include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value from the output. exclude_none: Whether to exclude fields that have a value of - Nonefrom the output. round_trip: Whether to enable serialization and deserialization round-trip support. warnings: Whether to log warnings when invalid fields are encountered.
- mode: The mode in which 
- Returns:
- A dictionary representation of the model. 
 
 - model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - Generates a JSON representation of the model using Pydantic’s - to_jsonmethod.- Args:
- indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of - None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.
- Returns:
- A JSON string representation of the model. 
 
 - classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]¶
- Generates a JSON schema for a model class. - Args:
- by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of - GenerateJsonSchemawith your desired modifications- mode: The mode in which to generate the schema. 
- Returns:
- The JSON schema for the given model class. 
 
 - classmethod model_parametrized_name(params: tuple[type[Any], ...]) str¶
- Compute the class name for parametrizations of generic classes. - This method can be overridden to achieve a custom naming scheme for generic BaseModels. - Args:
- params: Tuple of types of the class. Given a generic class
- Modelwith 2 type variables and a concrete model- Model[str, int], the value- (str, int)would be passed to- params.
 
- Returns:
- String representing the new class where - paramsare passed to- clsas type variables.
- Raises:
- TypeError: Raised when trying to generate concrete names for non-generic models. 
 
 - model_post_init(_BaseModel__context: Any) None¶
- Override this method to perform additional initialization after - __init__and- model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
 - classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None¶
- Try to rebuild the pydantic-core schema for the model. - This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. - Args:
- force: Whether to force the rebuilding of the model schema, defaults to - False. raise_errors: Whether to raise errors, defaults to- True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to- None.
- Returns:
- Returns - Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns- Trueif rebuilding was successful, otherwise- False.
 
 - classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate a pydantic model instance. - Args:
- obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. 
- Raises:
- ValidationError: If the object could not be validated. 
- Returns:
- The validated model instance. 
 
 - classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - Validate the given JSON data against the Pydantic model. - Args:
- json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
- Raises:
- ValueError: If - json_datais not a JSON string.
 
 - classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate the given object contains string data against the Pydantic model. - Args:
- obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
 
 - classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
 - classmethod parse_obj(obj: Any) Model¶
 - classmethod parse_raw(*args: Any, **kwargs: Any) QuantumProvenanceData¶
 - classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str¶
 - classmethod validate(value: Any) Model¶