LinearitySolveTask¶
- class lsst.cp.pipe.LinearitySolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
- Bases: - PipelineTask- Fit the linearity from the PTC dataset. - Attributes Summary - Methods Summary - debugFit(stepname, xVector, yVector, yModel, ...)- Debug method for linearity fitting. - Empty (clear) the metadata for this Task and all sub-Tasks. - fillBadAmp(linearizer, fitOrder, inputPtc, amp)- Get metadata for all tasks. - Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- run(inputPtc, dummy, camera, inputDims[, ...])- Fit non-linearity to PTC data, returning the correct Linearizer object. - runQuantum(butlerQC, inputRefs, outputRefs)- Ensure that the input and output dimensions are passed along. - timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - Methods Documentation - debugFit(stepname, xVector, yVector, yModel, mask, ampName)¶
- Debug method for linearity fitting. - Parameters:
- stepnamestr
- A label to use to check if we care to debug at a given line of code. 
- xVectornumpy.array, (N,)
- The values to use as the independent variable in the linearity fit. 
- yVectornumpy.array, (N,)
- The values to use as the dependent variable in the linearity fit. 
- yModelnumpy.array, (N,)
- The values to use as the linearized result. 
- masknumpy.array[bool], (N,) , optional
- A mask to indicate which entries of - xVectorand- yVectorto keep.
- ampNamestr
- Amplifier name to lookup linearity correction values. 
 
- stepname
 
 - fillBadAmp(linearizer, fitOrder, inputPtc, amp)¶
 - getFullMetadata() TaskMetadata¶
- Get metadata for all tasks. - Returns:
- metadataTaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 
- metadata
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
 - getFullName() str¶
- Get the task name as a hierarchical name including parent task names. - Returns:
- fullNamestr
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”. 
- The full name of subtask “sub” of top-level task “top” is “top.sub”. 
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”. 
 
 
- fullName
 
 - getName() str¶
- Get the name of the task. - Returns:
- taskNamestr
- Name of the task. 
 
- taskName
 - See also - getFullName
- Get the full name of the task. 
 
 - getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns:
- taskDictdict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict
 
 - classmethod makeField(doc: str) ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- docstr
- Help text for the field. 
 
- doc
- Returns:
- configurableFieldlsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 
- configurableField
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
 - makeSubtask(name: str, **keyArgs: Any) None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters:
- namestr
- Brief name of the subtask. 
- **keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - config.
- parentTask.
 
 
- name
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
 - run(inputPtc, dummy, camera, inputDims, inputPhotodiodeCorrection=None)¶
- Fit non-linearity to PTC data, returning the correct Linearizer object. - Parameters:
- inputPtclsst.ip.isr.PtcDataset
- Pre-measured PTC dataset. 
- dummylsst.afw.image.Exposure
- The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option. 
- inputPhotodiodeCorrectionlsst.ip.isr.PhotodiodeCorrection
- Pre-measured photodiode correction used in the case when applyPhotodiodeCorrection=True. 
- cameralsst.afw.cameraGeom.Camera
- Camera geometry. 
- inputDimslsst.daf.butler.DataCoordinateordict
- DataIds to use to populate the output calibration. 
 
- inputPtc
- Returns:
- resultslsst.pipe.base.Struct
- The results struct containing: - outputLinearizer
- Final linearizer calibration ( - lsst.ip.isr.Linearizer).
- outputProvenance
- Provenance data for the new calibration ( - lsst.ip.isr.IsrProvenance).
 
 
- results
 - Notes - This task currently fits only polynomial-defined corrections, where the correction coefficients are defined such that: \(corrImage = uncorrImage + \sum_i c_i uncorrImage^(2 + i)\) These \(c_i\) are defined in terms of the direct polynomial fit: \(meanVector ~ P(x=timeVector) = \sum_j k_j x^j\) such that \(c_(j-2) = -k_j/(k_1^j)\) in units of DN^(1-j) (c.f., Eq. 37 of 2003.05978). The - config.polynomialOrderor- config.splineKnotsdefine the maximum order of \(x^j\) to fit. As \(k_0\) and \(k_1\) are degenerate with bias level and gain, they are not included in the non-linearity correction.
 - runQuantum(butlerQC, inputRefs, outputRefs)¶
- Ensure that the input and output dimensions are passed along. - Parameters:
- butlerQClsst.daf.butler.QuantumContext
- Butler to operate on. 
- inputRefslsst.pipe.base.InputQuantizedConnection
- Input data refs to load. 
- ouptutRefslsst.pipe.base.OutputQuantizedConnection
- Output data refs to persist. 
 
- butlerQC