MetricsExampleModel¶
- class lsst.daf.butler.tests.MetricsExampleModel(*, summary: dict[str, Any] | None = None, output: dict[str, Any] | None = None, data: list[Any] | None = None)¶
- Bases: - BaseModel- A variant of - MetricsExamplebased on model.- Attributes Summary - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- Methods Summary - from_metrics(metrics)- Create a model based on an example. - Attributes Documentation - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Union[list[Any], NoneType], required=False), 'output': FieldInfo(annotation=Union[dict[str, Any], NoneType], required=False), 'summary': FieldInfo(annotation=Union[dict[str, Any], NoneType], required=False)}¶
- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- This replaces - Model.__fields__from Pydantic V1.
 - Methods Documentation - classmethod from_metrics(metrics: MetricsExample) MetricsExampleModel¶
- Create a model based on an example. - Parameters:
- metricsMetricsExample
- Metrics from which to construct the model. 
 
- metrics
- Returns:
- modelMetricsExampleModel
- New model. 
 
- model