AbstractMetadataMetricTask¶
- class lsst.verify.tasks.AbstractMetadataMetricTask(**kwargs)¶
Bases:
MetricTaskA base class for tasks that compute metrics from metadata values.
This class contains code that is agnostic to whether the input is one metadata object or many.
- Parameters:
- *args
- **kwargs
Constructor parameters are the same as for
lsst.pipe.base.PipelineTask.
Notes
This class should be customized by overriding
getInputMetadataKeysandrun.Attributes Summary
Methods Summary
Empty (clear) the metadata for this Task and all sub-Tasks.
extractMetadata(metadata, metadataKeys)Read multiple keys from a metadata object.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getInputMetadataKeys(config)Return the metadata keys read by this task.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.run(**kwargs)Run the MetricTask on in-memory data.
runQuantum(butlerQC, inputRefs, outputRefs)Do Butler I/O to provide in-memory objects for run.
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- static extractMetadata(metadata, metadataKeys)¶
Read multiple keys from a metadata object.
- Parameters:
- metadata
lsst.pipe.base.TaskMetadata A metadata object.
- metadataKeys
dict[str,str] Keys are arbitrary labels, values are metadata keys (or their substrings) in the format of
lsst.pipe.base.Task.getFullMetadata().
- metadata
- Returns:
- Raises:
- lsst.verify.tasks.MetricComputationError
Raised if any metadata key string has more than one match in
metadata.
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- abstract classmethod getInputMetadataKeys(config)¶
Return the metadata keys read by this task.
- Parameters:
- config
cls.ConfigClass Configuration for this task.
- config
- Returns:
- keys
dict[str,str] The keys are the (arbitrary) names of values to use in task code, the values are the metadata keys to be looked up (see the
metadataKeysparameter toextractMetadata). Metadata keys are assumed to include task prefixes in the format oflsst.pipe.base.Task.getFullMetadata(). This method may return a substring of the desired (full) key, but the string must match a unique metadata key.
- keys
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- abstract run(**kwargs)¶
Run the MetricTask on in-memory data.
- Parameters:
- **kwargs
Keyword arguments matching the inputs given in the class config; see
lsst.pipe.base.PipelineTask.runfor more details.
- Returns:
- struct
lsst.pipe.base.Struct A
Structcontaining at least the following component:measurement: the value of the metric (lsst.verify.MeasurementorNone). This method is not responsible for adding mandatory metadata (e.g., the data ID); this is handled by the caller.Nonemay be used to indicate that a metric is undefined or irrelevant instead of raisingNoWorkFound.
- struct
- Raises:
- lsst.verify.tasks.MetricComputationError
Raised if an algorithmic or system error prevents calculation of the metric. Examples include corrupted input data or unavoidable exceptions raised by analysis code. The
MetricComputationErrorshould be chained to a more specific exception describing the root cause.Not having enough data for a metric to be applicable is not an error, and should raise
NoWorkFound(see below) instead of this exception.- lsst.pipe.base.NoWorkFound
Raised if the metric is ill-defined or otherwise inapplicable to the data. Typically this means that the pipeline step or option being measured was not run.
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Do Butler I/O to provide in-memory objects for run.
This specialization of runQuantum performs error-handling specific to MetricTasks.