LeastSquares¶
- class lsst.afw.math.LeastSquares¶
- Bases: - pybind11_object- Attributes Summary - Methods Summary - fromDesignMatrix(design, data, factorization)- fromNormalEquations(fisher, rhs, factorization)- getCovariance(self)- getDiagnostic(self, arg0)- getDimension(self)- getFactorization(self)- getFisherMatrix(self)- getRank(self)- getSolution(self)- getThreshold(self)- setDesignMatrix(self, arg0, arg1)- setNormalEquations(self, arg0, arg1)- setThreshold(self, arg0)- Attributes Documentation - DIRECT_SVD = <Factorization.DIRECT_SVD: 2>¶
 - NORMAL_CHOLESKY = <Factorization.NORMAL_CHOLESKY: 1>¶
 - NORMAL_EIGENSYSTEM = <Factorization.NORMAL_EIGENSYSTEM: 0>¶
 - Methods Documentation - static fromDesignMatrix(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares¶
 - static fromNormalEquations(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares¶
 - getCovariance(self: lsst.afw.math.LeastSquares) numpy.ndarray¶
 - getDiagnostic(self: lsst.afw.math.LeastSquares, arg0: lsst.afw.math.LeastSquares.Factorization) numpy.ndarray¶
 - getDimension(self: lsst.afw.math.LeastSquares) int¶
 - getFactorization(self: lsst.afw.math.LeastSquares) lsst.afw.math.LeastSquares.Factorization¶
 - getFisherMatrix(self: lsst.afw.math.LeastSquares) numpy.ndarray¶
 - getRank(self: lsst.afw.math.LeastSquares) int¶
 - getSolution(self: lsst.afw.math.LeastSquares) numpy.ndarray¶
 - getThreshold(self: lsst.afw.math.LeastSquares) float¶
 - setDesignMatrix(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None¶
 - setNormalEquations(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None¶
 - setThreshold(self: lsst.afw.math.LeastSquares, arg0: float) None¶