MakeMetricTableTask¶
- class lsst.analysis.tools.tasks.MakeMetricTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
AnalysisPipelineTaskTurn metric bundles which are per tract into a summary metric table.
TO DO: DM-44485 make sure this works for visit level data as well.
Attributes Summary
Methods Summary
Get the names of the inputs.
Empty (clear) the metadata for this Task and all sub-Tasks.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
getTractCorners(skymap, tract)Calculate the corners of a tract, given skymap.
loadData(handle[, names])Load the minimal set of keyed data from the input dataset.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.parsePlotInfo(inputs, dataId[, connectionName])Parse the inputs and dataId to get the information needed to to add to the figure.
run(tracts, metricBundles, skymap)Take the metric bundles and expand them out, add the tract corner information and then make a table of the information.
runQuantum(butlerQC, inputRefs, outputRefs)Take a metric bundle for all the tracts and seperate it into different metrics then make it into a table.
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
- warnings_all = ('divide by zero encountered in divide', 'invalid value encountered in arcsin', 'invalid value encountered in cos', 'invalid value encountered in divide', 'invalid value encountered in log10', 'invalid value encountered in scalar divide', 'invalid value encountered in sin', 'invalid value encountered in sqrt', 'invalid value encountered in true_divide', 'Mean of empty slice')¶
Methods Documentation
- collectInputNames() Iterable[str]¶
Get the names of the inputs.
If using the default
loadDatamethod this will gather the names of the keys to be loaded from an input dataset.- Returns:
- inputs
Iterableofstr The names of the keys in the
KeyedDataobject to extract.
- inputs
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- getTractCorners(skymap, tract)¶
Calculate the corners of a tract, given skymap.
Notes
Corners are returned in degrees and wrapped in ra.
- loadData(handle: DeferredDatasetHandle, names: Iterable[str] | None = None) KeyedData¶
Load the minimal set of keyed data from the input dataset.
- Parameters:
- handle
DeferredDatasetHandle Handle to load the dataset with only the specified columns.
- names
Iterableofstr The names of keys to extract from the dataset. If
namesisNonethen thecollectInputNamesmethod is called to generate the names. For most purposes these are the names of columns to load from a catalog or data frame.
- handle
- Returns:
- result:
KeyedData The dataset with only the specified keys loaded.
- result:
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- parsePlotInfo(inputs: Mapping[str, Any] | None, dataId: DataCoordinate | None, connectionName: str = 'data') Mapping[str, str]¶
Parse the inputs and dataId to get the information needed to to add to the figure.
- Parameters:
- inputs: `dict`
The inputs to the task
- dataCoordinate: `lsst.daf.butler.DataCoordinate`
The dataId that the task is being run on.
- connectionName: `str`, optional
Name of the input connection to use for determining table name.
- Returns:
- plotInfo
dict
- plotInfo
- run(tracts, metricBundles, skymap)¶
Take the metric bundles and expand them out, add the tract corner information and then make a table of the information.
- Parameters:
- Returns:
- tMetrics
pipe.base.Structcontainingastropy.table.Table
- tMetrics
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Take a metric bundle for all the tracts and seperate it into different metrics then make it into a table.
- Parameters:
- butlerQC
lsst.pipe.base.QuantumContext - inputRefs
lsst.pipe.base.InputQuantizedConnection - outputRefs
lsst.pipe.base.OutputQuantizedConnection
- butlerQC