InMemoryDatastore¶
- class lsst.daf.butler.datastores.inMemoryDatastore.InMemoryDatastore(config: DatastoreConfig, bridgeManager: DatastoreRegistryBridgeManager)¶
- Bases: - GenericBaseDatastore[- StoredMemoryItemInfo]- Basic Datastore for writing to an in memory cache. - This datastore is ephemeral in that the contents of the datastore disappear when the Python process completes. This also means that other processes can not access this datastore. - Parameters:
- configDatastoreConfigorstr
- Configuration. 
- bridgeManagerDatastoreRegistryBridgeManager
- Object that manages the interface between - Registryand datastores.
 
- config
 - Notes - InMemoryDatastore does not support any file-based ingest. - Attributes Summary - Path to configuration defaults. - A new datastore is created every time and datasets disappear when the process shuts down. - Methods Summary - clone(bridgeManager)- Make an independent copy of this Datastore with a different - DatastoreRegistryBridgeManagerinstance.- emptyTrash([ignore_errors])- Remove all datasets from the trash. - exists(ref)- Check if the dataset exists in the datastore. - export_records(refs)- Export datastore records and locations to an in-memory data structure. - forget(refs)- Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them. - get(ref[, parameters, storageClass])- Load an InMemoryDataset from the store. - Return all the lookup keys relevant to this datastore. - getURI(ref[, predict])- URI to the Dataset. - getURIs(ref[, predict])- Return URIs associated with dataset. - Make definitions of the opaque tables used by this Datastore. - import_records(data)- Import datastore location and record data from an in-memory data structure. - knows(ref)- Check if the dataset is known to the datastore. - needs_expanded_data_ids(transfer[, entity])- Test whether this datastore needs expanded data IDs to ingest. - put(inMemoryDataset, ref)- Write a InMemoryDataset with a given - DatasetRefto the store.- put_new(in_memory_dataset, ref)- Write a - InMemoryDatasetwith a given- DatasetRefto the store.- removeStoredItemInfo(ref)- Remove information about the file associated with this dataset. - retrieveArtifacts(refs, destination[, ...])- Retrieve the file artifacts associated with the supplied refs. - setConfigRoot(root, config, full[, overwrite])- Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root. - trash(ref[, ignore_errors])- Indicate to the Datastore that a dataset can be removed. - validateConfiguration(entities[, logFailures])- Validate some of the configuration for this datastore. - validateKey(lookupKey, entity)- Validate a specific look up key with supplied entity. - Attributes Documentation - defaultConfigFile: ClassVar[str | None] = 'datastores/inMemoryDatastore.yaml'¶
- Path to configuration defaults. Accessed within the - configsresource or relative to a search path. Can be None if no defaults specified.
 - isEphemeral: bool = True¶
- A new datastore is created every time and datasets disappear when the process shuts down. 
 - Methods Documentation - clone(bridgeManager: DatastoreRegistryBridgeManager) InMemoryDatastore¶
- Make an independent copy of this Datastore with a different - DatastoreRegistryBridgeManagerinstance.- Parameters:
- bridgeManagerDatastoreRegistryBridgeManager
- New - DatastoreRegistryBridgeManagerobject to use when instantiating managers.
 
- bridgeManager
- Returns:
- datastoreDatastore
- New - Datastoreinstance with the same configuration as the existing instance.
 
- datastore
 
 - emptyTrash(ignore_errors: bool = False) None¶
- Remove all datasets from the trash. - Parameters:
- ignore_errorsbool, optional
- Ignore errors. 
 
- ignore_errors
 - Notes - The internal tracking of datasets is affected by this method and transaction handling is not supported if there is a problem before the datasets themselves are deleted. - Concurrency should not normally be an issue for the in memory datastore since all internal changes are isolated to solely this process and the registry only changes rows associated with this process. 
 - exists(ref: DatasetRef) bool¶
- Check if the dataset exists in the datastore. 
 - export_records(refs: Iterable[DatasetIdRef]) Mapping[str, DatastoreRecordData]¶
- Export datastore records and locations to an in-memory data structure. 
 - forget(refs: Iterable[DatasetRef]) None¶
- Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them. - Parameters:
- refsIterable[DatasetRef]
- References to the datasets being forgotten. 
 
- refs
 - Notes - Asking a datastore to forget a - DatasetRefit does not hold should be a silent no-op, not an error.
 - get(ref: DatasetRef, parameters: Mapping[str, Any] | None = None, storageClass: StorageClass | str | None = None) Any¶
- Load an InMemoryDataset from the store. - Parameters:
- refDatasetRef
- Reference to the required Dataset. 
- parametersdict
- StorageClass-specific parameters that specify, for example, a slice of the dataset to be loaded.
- storageClassStorageClassorstr, optional
- The storage class to be used to override the Python type returned by this method. By default the returned type matches the dataset type definition for this dataset. Specifying a read - StorageClasscan force a different type to be returned. This type must be compatible with the original type.
 
- ref
- Returns:
- inMemoryDatasetobject
- Requested dataset or slice thereof as an InMemoryDataset. 
 
- inMemoryDataset
- Raises:
- FileNotFoundError
- Requested dataset can not be retrieved. 
- TypeError
- Return value from formatter has unexpected type. 
- ValueError
- Formatter failed to process the dataset. 
 
 
 - getLookupKeys() set[LookupKey]¶
- Return all the lookup keys relevant to this datastore. - Returns:
- keyssetofLookupKey
- The keys stored internally for looking up information based on - DatasetTypename or- StorageClass.
 
- keys
 
 - getURI(ref: DatasetRef, predict: bool = False) ResourcePath¶
- URI to the Dataset. - Always uses “mem://” URI prefix. - Parameters:
- Returns:
- uristr
- URI pointing to the dataset within the datastore. If the dataset does not exist in the datastore, and if - predictis- True, the URI will be a prediction and will include a URI fragment “#predicted”. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
 
- uri
- Raises:
- FileNotFoundError
- A URI has been requested for a dataset that does not exist and guessing is not allowed. 
- AssertionError
- Raised if an internal error occurs. 
 
 
 - getURIs(ref: DatasetRef, predict: bool = False) DatasetRefURIs¶
- Return URIs associated with dataset. - Parameters:
- refDatasetRef
- Reference to the required dataset. 
- predictbool, optional
- If the datastore does not know about the dataset, controls whether it should return a predicted URI or not. 
 
- ref
- Returns:
- urisDatasetRefURIs
- The URI to the primary artifact associated with this dataset (if the dataset was disassembled within the datastore this may be - None), and the URIs to any components associated with the dataset artifact. (can be empty if there are no components).
 
- uris
 - Notes - The URIs returned for in-memory datastores are not usable but provide an indication of the associated dataset. 
 - get_opaque_table_definitions() Mapping[str, DatastoreOpaqueTable]¶
- Make definitions of the opaque tables used by this Datastore. - Returns:
- tablesMapping[str,ddl.TableSpec]
- Mapping of opaque table names to their definitions. This can be an empty mapping if Datastore does not use opaque tables to keep datastore records. 
 
- tables
 
 - import_records(data: Mapping[str, DatastoreRecordData]) None¶
- Import datastore location and record data from an in-memory data structure. - Parameters:
 - Notes - Implementations should generally not check that any external resources (e.g. files) referred to by these records actually exist, for performance reasons; we expect higher-level code to guarantee that they do. - Implementations are responsible for calling - DatastoreRegistryBridge.inserton all datasets in- data.locationswhere the key is in- names, as well as loading any opaque table data.- Implementations may assume that datasets are either fully present or not at all (single-component exports are not permitted). 
 - knows(ref: DatasetRef) bool¶
- Check if the dataset is known to the datastore. - This datastore does not distinguish dataset existence from knowledge of a dataset. 
 - needs_expanded_data_ids(transfer: str | None, entity: DatasetRef | DatasetType | StorageClass | None = None) bool¶
- Test whether this datastore needs expanded data IDs to ingest. - Parameters:
- Returns:
 
 - put(inMemoryDataset: Any, ref: DatasetRef) None¶
- Write a InMemoryDataset with a given - DatasetRefto the store.- Parameters:
- inMemoryDatasetobject
- The dataset to store. 
- refDatasetRef
- Reference to the associated Dataset. 
 
- inMemoryDataset
- Raises:
- TypeError
- Supplied object and storage class are inconsistent. 
- DatasetTypeNotSupportedError
- The associated - DatasetTypeis not handled by this datastore.
 
 - Notes - If the datastore is configured to reject certain dataset types it is possible that the put will fail and raise a - DatasetTypeNotSupportedError. The main use case for this is to allow- ChainedDatastoreto put to multiple datastores without requiring that every datastore accepts the dataset.
 - put_new(in_memory_dataset: Any, ref: DatasetRef) Mapping[str, DatasetRef]¶
- Write a - InMemoryDatasetwith a given- DatasetRefto the store.- Parameters:
- in_memory_datasetobject
- The Dataset to store. 
- refDatasetRef
- Reference to the associated Dataset. 
 
- in_memory_dataset
- Returns:
 
 - removeStoredItemInfo(ref: DatasetIdRef) None¶
- Remove information about the file associated with this dataset. - Parameters:
- refDatasetRef
- The dataset that has been removed. 
 
- ref
 - Notes - This method is actually not used by this implementation, but there are some tests that check that this method works, so we keep it for now. 
 - retrieveArtifacts(refs: Iterable[DatasetRef], destination: ResourcePath, transfer: str = 'auto', preserve_path: bool = True, overwrite: bool | None = False) list[lsst.resources._resourcePath.ResourcePath]¶
- Retrieve the file artifacts associated with the supplied refs. - Parameters:
- refsiterable of DatasetRef
- The datasets for which artifacts are to be retrieved. A single ref can result in multiple artifacts. The refs must be resolved. 
- destinationlsst.resources.ResourcePath
- Location to write the artifacts. 
- transferstr, optional
- Method to use to transfer the artifacts. Must be one of the options supported by - lsst.resources.ResourcePath.transfer_from(). “move” is not allowed.
- preserve_pathbool, optional
- If - Truethe full path of the artifact within the datastore is preserved. If- Falsethe final file component of the path is used.
- overwritebool, optional
- If - Trueallow transfers to overwrite existing files at the destination.
 
- refsiterable of 
 - Notes - Not implemented by this datastore. 
 - classmethod setConfigRoot(root: str, config: Config, full: Config, overwrite: bool = True) None¶
- Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root. - Does nothing in this implementation. - Parameters:
- rootstr
- Filesystem path to the root of the data repository. 
- configConfig
- A - Configto update. Only the subset understood by this component will be updated. Will not expand defaults.
- fullConfig
- A complete config with all defaults expanded that can be converted to a - DatastoreConfig. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied from- fullto- config.
- overwritebool, optional
- If - False, do not modify a value in- configif the value already exists. Default is always to overwrite with the provided- root.
 
- root
 - Notes - If a keyword is explicitly defined in the supplied - configit will not be overridden by this method if- overwriteis- False. This allows explicit values set in external configs to be retained.
 - trash(ref: DatasetRef | Iterable[DatasetRef], ignore_errors: bool = False) None¶
- Indicate to the Datastore that a dataset can be removed. - Parameters:
- refDatasetRefor iterable thereof
- Reference to the required Dataset(s). 
- ignore_errorsbool, optional
- Indicate that errors should be ignored. 
 
- ref
- Raises:
- FileNotFoundError
- Attempt to remove a dataset that does not exist. Only relevant if a single dataset ref is given. 
 
 - Notes - Concurrency should not normally be an issue for the in memory datastore since all internal changes are isolated to solely this process and the registry only changes rows associated with this process. 
 - validateConfiguration(entities: Iterable[DatasetRef | DatasetType | StorageClass], logFailures: bool = False) None¶
- Validate some of the configuration for this datastore. - Parameters:
- Raises:
- DatastoreValidationError
- Raised if there is a validation problem with a configuration. All the problems are reported in a single exception. 
 
 - Notes - This method is a no-op. 
 - validateKey(lookupKey: LookupKey, entity: DatasetRef | DatasetType | StorageClass) None¶
- Validate a specific look up key with supplied entity. - Parameters:
- lookupKeyLookupKey
- Key to use to retrieve information from the datastore configuration. 
- entityDatasetRef,DatasetType, orStorageClass
- Entity to compare with configuration retrieved using the specified lookup key. 
 
- lookupKey
- Raises:
- DatastoreValidationError
- Raised if there is a problem with the combination of entity and lookup key. 
 
 - Notes - Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.