LinearitySolveTask¶
- class lsst.cp.pipe.LinearitySolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
PipelineTaskFit the linearity from the PTC dataset.
Attributes Summary
Methods Summary
debugFit(stepname, xVector, yVector, yModel, ...)Debug method for linearity fitting.
Empty (clear) the metadata for this Task and all sub-Tasks.
fillBadAmp(linearizer, fitOrder, inputPtc, amp)fixupBadAmps(linearizer)Fix nan padding in bad amplifiers.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.run(inputPtc, dummy, camera, inputDims[, ...])Fit non-linearity to PTC data, returning the correct Linearizer object.
runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- debugFit(stepname, xVector, yVector, yModel, mask, ampName)¶
Debug method for linearity fitting.
- Parameters:
- stepname
str A label to use to check if we care to debug at a given line of code.
- xVector
numpy.array, (N,) The values to use as the independent variable in the linearity fit.
- yVector
numpy.array, (N,) The values to use as the dependent variable in the linearity fit.
- yModel
numpy.array, (N,) The values to use as the linearized result.
- mask
numpy.array[bool], (N,) , optional A mask to indicate which entries of
xVectorandyVectorto keep.- ampName
str Amplifier name to lookup linearity correction values.
- stepname
- fillBadAmp(linearizer, fitOrder, inputPtc, amp)¶
- fixupBadAmps(linearizer)¶
Fix nan padding in bad amplifiers.
- Parameters:
- linearizer
lsst.ip.isr.Linearizer
- linearizer
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- run(inputPtc, dummy, camera, inputDims, inputPhotodiodeCorrection=None)¶
Fit non-linearity to PTC data, returning the correct Linearizer object.
- Parameters:
- inputPtc
lsst.ip.isr.PtcDataset Pre-measured PTC dataset.
- dummy
lsst.afw.image.Exposure The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- inputPhotodiodeCorrection
lsst.ip.isr.PhotodiodeCorrection Pre-measured photodiode correction used in the case when applyPhotodiodeCorrection=True.
- camera
lsst.afw.cameraGeom.Camera Camera geometry.
- inputDims
lsst.daf.butler.DataCoordinateordict DataIds to use to populate the output calibration.
- inputPtc
- Returns:
- results
lsst.pipe.base.Struct The results struct containing:
outputLinearizerFinal linearizer calibration (
lsst.ip.isr.Linearizer).outputProvenanceProvenance data for the new calibration (
lsst.ip.isr.IsrProvenance).
- results
Notes
This task currently fits only polynomial-defined corrections, where the correction coefficients are defined such that: \(corrImage = uncorrImage + \sum_i c_i uncorrImage^(2 + i)\) These \(c_i\) are defined in terms of the direct polynomial fit: \(meanVector ~ P(x=timeVector) = \sum_j k_j x^j\) such that \(c_(j-2) = -k_j/(k_1^j)\) in units of DN^(1-j) (c.f., Eq. 37 of 2003.05978). The
config.polynomialOrderorconfig.splineKnotsdefine the maximum order of \(x^j\) to fit. As \(k_0\) and \(k_1\) are degenerate with bias level and gain, they are not included in the non-linearity correction.
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Ensure that the input and output dimensions are passed along.
- Parameters:
- butlerQC
lsst.daf.butler.QuantumContext Butler to operate on.
- inputRefs
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC