DiaFakesDetectorVisitAnalysisTask¶
- class lsst.analysis.tools.tasks.DiaFakesDetectorVisitAnalysisTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
- Bases: - AnalysisPipelineTask- Attributes Summary - Methods Summary - Get the names of the inputs. - Empty (clear) the metadata for this Task and all sub-Tasks. - Get metadata for all tasks. - Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - Get a dictionary of all tasks as a shallow copy. - loadData(handle[, names])- Load the minimal set of keyed data from the input dataset. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- parsePlotInfo(inputs, dataId[, connectionName])- Parse the inputs and dataId to get the information needed to to add to the figure. - putByBand(butlerQC, outputs, outputRefs)- Handle the outputs by band. - run(*[, data])- Produce the outputs associated with this - PipelineTask.- runQuantum(butlerQC, inputRefs, outputRefs)- Override default runQuantum to load the minimal columns necessary to complete the action. - timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - warnings_all = ('divide by zero encountered in divide', 'invalid value encountered in arcsin', 'invalid value encountered in cos', 'invalid value encountered in divide', 'invalid value encountered in log10', 'invalid value encountered in scalar divide', 'invalid value encountered in sin', 'invalid value encountered in sqrt', 'invalid value encountered in true_divide', 'Mean of empty slice')¶
 - Methods Documentation - collectInputNames() Iterable[str]¶
- Get the names of the inputs. - If using the default - loadDatamethod this will gather the names of the keys to be loaded from an input dataset.- Returns:
- inputsIterableofstr
- The names of the keys in the - KeyedDataobject to extract.
 
- inputs
 
 - getFullMetadata() TaskMetadata¶
- Get metadata for all tasks. - Returns:
- metadataTaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 
- metadata
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
 - getFullName() str¶
- Get the task name as a hierarchical name including parent task names. - Returns:
- fullNamestr
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”. 
- The full name of subtask “sub” of top-level task “top” is “top.sub”. 
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”. 
 
 
- fullName
 
 - getName() str¶
- Get the name of the task. - Returns:
- taskNamestr
- Name of the task. 
 
- taskName
 - See also - getFullName
- Get the full name of the task. 
 
 - getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns:
- taskDictdict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict
 
 - loadData(handle: DeferredDatasetHandle, names: Iterable[str] | None = None) KeyedData¶
- Load the minimal set of keyed data from the input dataset. - Parameters:
- handleDeferredDatasetHandle
- Handle to load the dataset with only the specified columns. 
- namesIterableofstr
- The names of keys to extract from the dataset. If - namesis- Nonethen the- collectInputNamesmethod is called to generate the names. For most purposes these are the names of columns to load from a catalog or data frame.
 
- handle
- Returns:
- result: KeyedData
- The dataset with only the specified keys loaded. 
 
- result: 
 
 - classmethod makeField(doc: str) ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- docstr
- Help text for the field. 
 
- doc
- Returns:
- configurableFieldlsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 
- configurableField
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
 - makeSubtask(name: str, **keyArgs: Any) None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters:
- namestr
- Brief name of the subtask. 
- **keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - config.
- parentTask.
 
 
- name
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
 - parsePlotInfo(inputs: Mapping[str, Any] | None, dataId: DataCoordinate | None, connectionName: str = 'data') Mapping[str, str]¶
- Parse the inputs and dataId to get the information needed to to add to the figure. - Parameters:
- inputs: `dict`
- The inputs to the task 
- dataCoordinate: `lsst.daf.butler.DataCoordinate`
- The dataId that the task is being run on. 
- connectionName: `str`, optional
- Name of the input connection to use for determining table name. 
 
- Returns:
- plotInfodict
 
- plotInfo
 
 - putByBand(butlerQC: QuantumContext, outputs: Struct, outputRefs: OutputQuantizedConnection)¶
- Handle the outputs by band. - This is a convenience method to handle the case where the PipelineTaskConnection had to instantiate multiple output connections for plots to loop over bands. - Parameters:
- butlerQCQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- outputsStruct
- The accumulated results of all the plots and metrics produced by the - runmethod of this- PipelineTask.
- outputRefsOutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC
 
 - run(*, data: MutableMapping[str, ndarray[Any, dtype[_ScalarType_co]] | Scalar | HealSparseMap | Tensor | Mapping] | None = None, **kwargs) Struct¶
- Produce the outputs associated with this - PipelineTask.- Parameters:
- dataKeyedData
- The input data from which all - AnalysisToolswill run and produce outputs. A side note, the python typing specifies that this can be None, but this is only due to a limitation in python where in order to specify that all arguments be passed only as keywords the argument must be given a default. This argument most not actually be None.
- **kwargs
- Additional arguments that are passed through to the - AnalysisToolsspecified in the configuration.
 
- data
- Returns:
- resultsStruct
- The accumulated results of all the plots and metrics produced by this - PipelineTask.
 
- results
- Raises:
- ValueError
- Raised if the supplied data argument is - None
 
 
 - runQuantum(butlerQC: QuantumContext, inputRefs: InputQuantizedConnection, outputRefs: OutputQuantizedConnection) None¶
- Override default runQuantum to load the minimal columns necessary to complete the action. - Parameters:
- butlerQCQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- inputRefsInputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.
- outputRefsOutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC