ModelD¶
- class lsst.gauss2d.fit.ModelD¶
- Bases: - ParametricModel- Attributes Summary - Methods Summary - compute_hessian(self[, transformed, ...])- compute_loglike_grad(self[, include_prior, ...])- evaluate(self[, print, normalize_loglike])- gaussians(self, channel)- offsets_parameters(self)- parameters(self, parameters, paramfilter)- setup_evaluators(self, evaluatormode, ...)- verify_jacobian(self[, findiff_frac, ...])- Attributes Documentation - data¶
 - mode¶
 - outputs¶
 - priors¶
 - psfmodels¶
 - sources¶
 - Methods Documentation - compute_hessian(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, transformed: bool = False, include_prior: bool = True, options: lsst.gauss2d.fit._gauss2d_fit.HessianOptions | None = None, print: bool = False) lsst.gauss2d._gauss2d.ImageD¶
 - compute_loglike_grad(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, include_prior: bool = False, print: bool = False, verify: bool = False, findiff_frac: float = 0.0001, findiff_add: float = 0.0001, rtol: float = 0.001, atol: float = 0.001) list[float]¶
 - evaluate(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, print: bool = False, normalize_loglike: bool = False) list[float]¶
 - gaussians(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, channel: lsst.gauss2d.fit._gauss2d_fit.Channel) lsst.gauss2d._gauss2d.Gaussians¶
 - offsets_parameters(self: lsst.gauss2d.fit._gauss2d_fit.ModelD) list[tuple[lsst::modelfit::parameters::ParameterBase<double>, int]]¶
 - parameters(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, parameters: list[lsst::modelfit::parameters::ParameterBase<double>] = [], paramfilter: lsst::gauss2d::fit::ParamFilter = None) list[lsst::modelfit::parameters::ParameterBase<double>]¶
 - setup_evaluators(self: lsst.gauss2d.fit._gauss2d_fit.ModelD, evaluatormode: lsst.gauss2d.fit._gauss2d_fit.EvaluatorMode = <EvaluatorMode.image: 0>, outputs: list[list[lsst.gauss2d._gauss2d.ImageD]] = [], residuals: list[lsst.gauss2d._gauss2d.ImageD] = [], outputs_prior: list[lsst.gauss2d._gauss2d.ImageD] = [], residuals_prior: lsst.gauss2d._gauss2d.ImageD = None, force: bool = False, print: bool = False) None¶